Unit commitment by genetic algorithm with specialized search operators

被引:50
作者
Dudek, G [1 ]
机构
[1] Czestochowa Tech Univ, Inst Elect Power Engn, PL-42200 Czestochowa, Poland
关键词
unit commitment; power generation dispatch; genetic algorithms; evolutionary computation; combinatorial optimization;
D O I
10.1016/j.epsr.2004.04.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An approach for solving the unit commitment problem based on genetic algorithm with new search operators is presented. These operators, specific to the problem, are mutation with a probability of bit change depending on load demand, production and start-up costs of the generating units and transposition. The method incorporates time-dependent start-up costs, demand and reserve constraints, minimum up and down time constraints and units power generation limits. Repair algorithms or penalty factors in the objective function are applied to the infeasible solutions. Numerical results showed an improvement in the solution cost compared to the results obtained from genetic algorithm with standard operators and other techniques. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 19 条
[1]  
Back T., 1997, Handbook of evolutionary computation
[2]   THERMAL UNIT COMMITMENT USING GENETIC ALGORITHMS [J].
DASGUPTA, D ;
MCGREGOR, DR .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1994, 141 (05) :459-465
[3]  
DUDEK G, 2003, THESIS TU CZESTOCHOW
[4]   A genetic algorithm solution to the unit commitment problem [J].
Kazarlis, SA ;
Bakirtzis, AG ;
Petridis, V .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (01) :83-90
[5]   A Simulated Annealing Algorithm for unit commitment [J].
Mantawy, AH ;
Abdel-Magid, YL ;
Selim, SZ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (01) :197-204
[6]   Integrating genetic algorithms, tabu search, and simulated annealing for the unit commitment problem [J].
Mantawy, AH ;
Abdel-Magid, YL ;
Selim, SZ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (03) :829-836
[7]   Evolutionary algorithms for constrained engineering problems [J].
Michalewicz, Z ;
Dasgupta, D ;
Leriche, RG ;
Schoenauer, M .
COMPUTERS & INDUSTRIAL ENGINEERING, 1996, 30 (04) :851-870
[8]  
NAYAK R, 2000, COMPUT IND ENG, V30, P851
[9]  
ORVOSH D, 1994, P 1 IEEE C EV COMP
[10]   Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms [J].
Padhy, NP .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2001, 23 (08) :827-836