The strength of gold nanowires

被引:274
作者
Gall, K [1 ]
Diao, JK [1 ]
Dunn, ML [1 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
关键词
D O I
10.1021/nl048456s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomistic simulations are used to investigate the yield strength of experimentally observed atomic and nanometer scale gold wires. The atomistic predictions of strength are quantitatively consistent with discrete experimental measurements and they reveal the mechanisms for increasing nanowire strength with decreasing dimensional scale. Distinct transitions in yield strength and yield mechanism are discovered. At nanometer scales (diameter > 1 nm), the mechanism for strengthening involves the scarcity and low mobility of dislocations coupled with constraint from tensile surface stresses. As the wires approach the atomic scale (diameter < 1 nm), an increase in strength occurs concurrent with a surf ace-stress-induced change in the stable structure of the nanowires and the absence of dislocation-mediated yield. The results constitute a new fundamental understanding of strength in metallic nanowires spanning technologically relevant dimensional scales.
引用
收藏
页码:2431 / 2436
页数:6
相关论文
共 33 条
[1]   PLASTIC-DEFORMATION OF NANOMETER-SCALE GOLD CONNECTIVE NECKS [J].
AGRAIT, N ;
RUBIO, G ;
VIEIRA, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :3995-3998
[2]  
*ASTM, 2001, F7295 ASTM
[3]   QUANTIZED CONDUCTANCE IN ATOM-SIZED WIRES BETWEEN 2 METALS [J].
BRANDBYGE, M ;
SCHIOTZ, J ;
SORENSEN, MR ;
STOLTZE, P ;
JACOBSEN, KW ;
NORSKOV, JK ;
OLESEN, L ;
LAEGSGAARD, E ;
STENSGAARD, I ;
BESENBACHER, F .
PHYSICAL REVIEW B, 1995, 52 (11) :8499-8514
[4]   ATOMIC-LEVEL STRESS IN AN INHOMOGENEOUS SYSTEM [J].
CHEUNG, KS ;
YIP, S .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (10) :5688-5690
[5]   How do gold nanowires break? [J].
da Silva, EZ ;
da Silva, AJR ;
Fazzio, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :256102-1
[6]   EMBEDDED-ATOM METHOD - DERIVATION AND APPLICATION TO IMPURITIES, SURFACES, AND OTHER DEFECTS IN METALS [J].
DAW, MS ;
BASKES, MI .
PHYSICAL REVIEW B, 1984, 29 (12) :6443-6453
[7]   Surface-stress-induced phase transformation in metal nanowires [J].
Diao, JK ;
Gall, K ;
Dunn, ML .
NATURE MATERIALS, 2003, 2 (10) :656-660
[8]   Yield strength asymmetry in metal nanowires [J].
Diao, JK ;
Gall, K ;
Dunn, ML .
NANO LETTERS, 2004, 4 (10) :1863-1867
[9]   Atomistic simulation of the structure and elastic properties of gold nanowires [J].
Diao, JK ;
Gall, K ;
Dunn, ML .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (09) :1935-1962
[10]   STRUCTURAL DEFECTS IN AMORPHOUS SOLIDS - A COMPUTER-SIMULATION STUDY [J].
EGAMI, T ;
MAEDA, K ;
VITEK, V .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1980, 41 (06) :883-901