Atlas renormalization for improved brain MR image segmentation across scanner platforms

被引:170
作者
Han, Xiao
Fischl, Bruce
机构
[1] Harvard Univ, Sch Med, Athinoula A Martinos Ctr Biomed Imaging, Massachusetts Gen Hosp, Cambridge, MA 02129 USA
[2] MIT, AI Lab, Cambridge, MA 02139 USA
关键词
brain atlas; brain imaging; computational neuroanatomy; magnetic resonance imaging (MRI) segmentation;
D O I
10.1109/TMI.2007.893282
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Atlas-based approaches have demonstrated the ability to automatically identify detailed brain structures from 3-D magnetic resonance (MR) brain images. Unfortunately, the accuracy of this type of method often degrades when processing data acquired on a different scanner platform or pulse sequence than the data used for the atlas training. In this paper, we improve the performance of an atlas-based whole brain segmentation method by introducing an intensity renormalization procedure that automatically adjusts the prior atlas intensity model to new input data. Validation using manually labeled test datasets has shown that the new procedure improves the segmentation accuracy (as measured by the Dice coefficient) by 10% or more for several structures including hippocampus, amygdala, caudate, and pallidum. The results verify that this new procedure reduces the sensitivity of the whole brain segmentation method to changes in scanner platforms and improves its accuracy and robustness, which can thus facilitate multicenter or multisite neuroanatomical imaging studies.
引用
收藏
页码:479 / 486
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 1999, The Prostate Cancer Journal, DOI DOI 10.1046/J.1525-1411.1999.14005.X
[2]   Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations - Application to the registration of histological slices [J].
Arsigny, V ;
Pennec, X ;
Ayache, N .
MEDICAL IMAGE ANALYSIS, 2005, 9 (06) :507-523
[3]   Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: Part I, methodology and validation on normal subjects [J].
Dawant, BM ;
Hartmann, SL ;
Thirion, JP ;
Maes, F ;
Vandermeulen, D ;
Demaerel, P .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (10) :909-916
[4]   Sequence-independent segmentation of magnetic resonance images [J].
Fischl, B ;
Salat, DH ;
van der Kouwe, AJW ;
Makris, N ;
Ségonne, F ;
Quinn, BT ;
Dale, AM .
NEUROIMAGE, 2004, 23 :S69-S84
[5]   Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain [J].
Fischl, B ;
Salat, DH ;
Busa, E ;
Albert, M ;
Dieterich, M ;
Haselgrove, C ;
van der Kouwe, A ;
Killiany, R ;
Kennedy, D ;
Klaveness, S ;
Montillo, A ;
Makris, N ;
Rosen, B ;
Dale, AM .
NEURON, 2002, 33 (03) :341-355
[6]  
Ge YL, 2000, J MAGN RESON IMAGING, V12, P715, DOI 10.1002/1522-2586(200011)12:5<715::AID-JMRI8>3.3.CO
[7]  
2-4
[8]   CRUISE: Cortical reconstruction using implicit surface evolution [J].
Han, X ;
Pham, DL ;
Tosun, D ;
Rettmann, ME ;
Xu, CY ;
Prince, JL .
NEUROIMAGE, 2004, 23 (03) :997-1012
[9]   An automated registration algorithm for measuring MRI subcortical brain structures [J].
Iosifescu, DV ;
Shenton, ME ;
Warfield, SK ;
Kikinis, R ;
Dengler, J ;
Jolesz, FA ;
McCarley, RW .
NEUROIMAGE, 1997, 6 (01) :13-25
[10]   Elastic model-based segmentation of 3-D neuroradiological data sets [J].
Kelemen, A ;
Székely, G ;
Gerig, G .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (10) :828-839