Rigorous proof of Fermi liquid behavior for jellium two-dimensional interacting fermions

被引:17
作者
Disertori, M [1 ]
Rivasseau, V [1 ]
机构
[1] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
关键词
D O I
10.1103/PhysRevLett.85.361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the method of continuous constructive renormalization group around the Fermi surface, we prove that a jellium two-dimensional interacting system of fermions at low temperature T is analytic in the coupling constant lambda for \lambda\ \logT\ less than or equal to K, where K is some numerical constant and T is the temperature. In that range of parameters, the first and second derivatives of the self-energy remain bounded, a behavior seen in Fermi liquids but, in particular, not in Luttinger liquids. Our results also prove that in 2D any transition temperature must be nonperturbative in the coupling constant, a result expected on physical grounds. The proof exploits specific momentum conservation rules in two dimensions.
引用
收藏
页码:361 / 364
页数:4
相关论文
共 31 条
[1]   Explicit fermionic tree expansions [J].
Abdesselam, A ;
Rivasseau, V .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (01) :77-88
[2]  
ABDESSELAM A, 1995, LECT NOTES PHYSICS, V446
[3]  
Anderson P. W., 1997, THEORY SUPERCONDUCTI
[4]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[5]   PERTURBATION-THEORY OF THE FERMI-SURFACE IN A QUANTUM LIQUID - A GENERAL QUASI-PARTICLE FORMALISM AND ONE-DIMENSIONAL SYSTEMS [J].
BENFATTO, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) :541-664
[6]   BETA-FUNCTION AND SCHWINGER-FUNCTIONS FOR A MANY FERMIONS SYSTEM IN ONE-DIMENSION - ANOMALY OF THE FERMI-SURFACE [J].
BENFATTO, G ;
GALLAVOTTI, G ;
PROCACCI, A ;
SCOPPOLA, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) :93-171
[7]   BETA-FUNCTION AND ANOMALY OF THE FERMI-SURFACE FOR A D=1 SYSTEM OF INTERACTING FERMIONS IN A PERIODIC POTENTIAL [J].
BONETTO, F ;
MASTROPIETRO, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :57-93
[8]   Continuous constructive fermionic renormalization [J].
Disertori, M ;
Rivasseau, V .
ANNALES HENRI POINCARE, 2000, 1 (01) :1-57
[9]  
DISERTORI M, IN PRESS COMMUN MATH
[10]   AN INTRINSIC 1/N EXPANSION FOR MANY-FERMION SYSTEMS [J].
FELDMAN, J ;
MAGNEN, J ;
RIVASSEAU, V ;
TRUBOWITZ, E .
EUROPHYSICS LETTERS, 1993, 24 (06) :437-442