High efficiency creation of human monoclonal antibody-producing hybridomas

被引:33
作者
Dessain, SK
Adekar, SP
Stevens, JB
Carpenter, KA
Skorski, ML
Barnoski, BL
Goldsby, RA
Weinberg, RA
机构
[1] Thomas Jefferson Univ, Cardeza Fdn Hematol Res, Philadelphia, PA 19107 USA
[2] Massachusetts Gen Hosp, Div Hematol Oncol, Boston, MA 02114 USA
[3] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[4] Thomas Jefferson Univ, Div Genet & Prevent Med, Philadelphia, PA 19107 USA
[5] Amherst Coll, Dept Biol, Amherst, MA 01002 USA
关键词
human monoclonal antibody; hybridoma; B-lymphocyte; interleukin-6; Streptococcus pneumoniae;
D O I
10.1016/j.jim.2004.05.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The native human antibody repertoire holds unexplored potential for the development of novel monoclonal antibody therapeutics. Current techniques that fuse immortal cells and primary B-lymphocytes are sub-optimal for the routine production of hybridomas that secrete human monoclonal antibodies. We have found that a murine cell line that ectopically expresses murine interleukin-6 (mIL-6) and human telomerase (hTERT) efficiently forms stable human antibody-secreting heterohybridomas through cell fusion with primary human B-lymphocytes. The hybrid cells maintain secretion of human antibodies derived from the primary B-lymphocytes through multiple rounds of cloning. Using splenic B-lymphocytes from a patient immunized with a Streptococcus pneumoniae capsular polysaccharide vaccine, we have succeeded in creating hybridomas that secrete human monoclonal antibodies specific for S. pneumoniae antigens. Using peripheral blood lymphocytes, we have similarly cloned a human antibody that binds a viral antigen. These experiments establish that SP2/0-derived cell lines ectopically expressing mIL-6 and hTERT will enable the rapid cloning of native human monoclonal antibodies. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 58 条
[1]  
Anderson KC, 1999, SEMIN HEMATOL, V36, P14
[2]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[3]  
Baxendale HE, 2000, EUR J IMMUNOL, V30, P1214, DOI 10.1002/(SICI)1521-4141(200004)30:4<1214::AID-IMMU1214>3.0.CO
[4]  
2-D
[5]   Switching and signaling at the telomere [J].
Blackburn, EH .
CELL, 2001, 106 (06) :661-673
[6]   Yeast surface display for screening combinatorial polypeptide libraries [J].
Boder, ET ;
Wittrup, KD .
NATURE BIOTECHNOLOGY, 1997, 15 (06) :553-557
[7]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[8]   Production of human antibody repertoires in transgenic mice [J].
Bruggemann, M ;
Taussig, MJ .
CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (04) :455-458
[9]   The continued emergence of drug-resistant Streptococcus pneumoniae in the United States: An update from the centers for disease control and prevention's pneumococcal sentinel surveillance system [J].
Butler, JC ;
Hofmann, J ;
Cetron, MS ;
Elliott, JA ;
Facklam, RR ;
Breiman, RF ;
Camp, C ;
Charache, P ;
Dern, R ;
Jackson, M ;
Hadley, WK ;
HoppeBauer, J ;
Jacobs, MR ;
Schreiber, J ;
Boxerbaum, B ;
Menuey, BC ;
Tyler, PG ;
Monahan, J ;
Moore, H ;
Siegel, JD ;
Sherer, D ;
Rogers, P ;
Welch, D ;
Fine, D ;
Radike, J ;
Fiore, A ;
Alexander, M ;
Deaver, K .
JOURNAL OF INFECTIOUS DISEASES, 1996, 174 (05) :986-993
[10]   Passive antibody therapies: Progress and continuing challenges [J].
Casadevall, A .
CLINICAL IMMUNOLOGY, 1999, 93 (01) :5-15