On the space-time curvature experienced by quasiparticle excitations in the Painleve-Gullstrand effective geometry

被引:28
作者
Fischer, UR
Visser, M
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
D O I
10.1016/S0003-4916(03)00011-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider quasiparticle propagation in constant-speed-of-sound (iso-tachic) and almost incompressible (iso-pycnal) hydrodynamic flows, using the technical machinery of general relativity to investigate the "effective space-time geometry" that is probed by the quasiparticles. This effective geometry, described for the quasiparticles of condensed matter systems by the Painleve-Gullstrand metric, generally exhibits curvature (in the sense of Riemann) and many features of quasiparticle propagation can be re-phrased in terms of null geodesics, Killing vectors, and Jacobi fields. As particular examples of hydrodynamic flow we consider shear flow, a constant-circulation vortex, flow past an impenetrable cylinder, and rigid rotation. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:22 / 39
页数:18
相关论文
共 31 条
[11]  
Hawking S. W., 1973, The Large Scale Structure of Space-Time
[12]  
LAMB H, 1945, HYDRODYNAMICS REPUBL
[13]   Space-time geometry of quantum dielectrics [J].
Leonhardt, U .
PHYSICAL REVIEW A, 2000, 62 (01) :8
[14]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .2. EXCITATION SPECTRUM [J].
LIEB, EH .
PHYSICAL REVIEW, 1963, 130 (04) :1616-+
[15]  
Madelung E, 1926, Z PHYS, V40, P322
[16]   Regular coordinate systems for Schwarzschild and other spherical spacetimes [J].
Martel, K ;
Poisson, A .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (04) :476-480
[17]  
Milne-Thomson LM., 1962, Theoretical hydrodynamics, V4th edn
[18]  
Misner C W, 1973, GRAVITATION
[19]  
Painlevé P, 1921, CR HEBD ACAD SCI, V173, P677
[20]   Hawking radiation as tunneling [J].
Parikh, MK ;
Wilczek, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5042-5045