Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries

被引:91
作者
Johnson, C. S. [1 ]
Kang, S. -H. [1 ]
Vaughey, J. T. [1 ]
Pol, S. V. [2 ]
Balasubramanian, M. [2 ]
Thackeray, M. M. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SECONDARY BATTERIES; HIGH-CAPACITY; ELECTRODES; OXIDES; INTERCALATION; CATALYST; LI2MNO3; XANES; IRON;
D O I
10.1021/cm902713m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium has been extracted both electrochemically and chemically from the defect antifluorite-type structure, Li5FeO4 (5Li(2)O center dot Fe2O3). The electrochemical data show that four lithium ions can be removed from Li5FeO4 between 3.5 and 4.5 V. vs Li-0. X-ray absorption spectroscopy (XAS) data of electrochemically delithiated samples show evidence of some Fe3+ to Fe4+ oxidation during the initial charge. On the other hand, XAS data of chemically delithiated samples show no evidence of Fe3+ to Fe4+ oxidation, but rather a change in coordination of the Fe3+ ions from tetrahedral to octahedral coordination, suggesting that lithium extraction from Li5FeO4 is accompanied predominantly by the release of oxygen, the net loss being lithia (Li2O); the residual lithium-iron-oxide product has a Fe2O3-rich composition. The high lithium content in Li5FeO4 renders it an attractive cathode precursor for loading the graphite (C-6) anode of lithium-ion electrochemical cells with sufficient lithium to enable the discharge of a charged component in the parent cathode, Li1.2V3O8, as well as the residual Fe2O3-rich component. The electrochemical behavior of C-6/Li5FeO4-Li1.2V3O8 lithium-ion cells is compared to C-6/Li2MnO3-Li1.2V3O8 cells containing a layered Li2MnO3 (Li2O center dot MnO2) cathode precursor with a lower Li2O content, from which lithia can be extracted at higher potentials, typically > 4 V vs metallic lithium. The ability to remove Li2O electrochemically from metal oxide host structures with a high lithium content, such as Li5FeO4, has implications for Li-air cells.
引用
收藏
页码:1263 / 1270
页数:8
相关论文
共 30 条
[21]   Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries [J].
Park, S. -H. ;
Kang, S. -H. ;
Johnson, C. S. ;
Amine, K. ;
Thackeray, M. M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :262-268
[22]   LI/LI1+X V3O8 SECONDARY BATTERIES .3. FURTHER CHARACTERIZATION OF THE MECHANISM OF LI+ INSERTION AND OF THE CYCLING BEHAVIOR [J].
PISTOIA, G ;
PASQUALI, M ;
TOCCI, M ;
MOSHTEV, RV ;
MANER, V .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (02) :281-284
[23]   ATHENA, ARTEMIS, HEPHAESTUS:: data analysis for X-ray absorption spectroscopy using IFEFFIT [J].
Ravel, B ;
Newville, M .
JOURNAL OF SYNCHROTRON RADIATION, 2005, 12 :537-541
[24]   Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries [J].
Thackeray, MM ;
Johnson, CS ;
Vaughey, JT ;
Li, N ;
Hackney, SA .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (23) :2257-2267
[25]   STRUCTURAL CHARACTERIZATION OF THE LITHIATED IRON-OXIDES LIXFE3O4 AND LIXFE2O3 (0-LESS-THAN-X-LESS-THAN-2) [J].
THACKERAY, MM ;
DAVID, WIF ;
GOODENOUGH, JB .
MATERIALS RESEARCH BULLETIN, 1982, 17 (06) :785-793
[26]   Jahn-Teller distortion around Fe4+ in Sr(FexTi1-x)O3-δ from x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy [J].
Vracar, M. ;
Kuzmin, A. ;
Merkle, R. ;
Purans, J. ;
Kotomin, E. A. ;
Maier, J. ;
Mathon, O. .
PHYSICAL REVIEW B, 2007, 76 (17)
[27]  
Weller MT, 2000, ANGEW CHEM INT EDIT, V39, P4162, DOI 10.1002/1521-3773(20001117)39:22<4162::AID-ANIE4162>3.0.CO
[28]  
2-X
[29]  
Wilke M, 2001, AM MINERAL, V86, P714
[30]   Electrochemical Activities in Li2MnO3 [J].
Yu, Denis Y. W. ;
Yanagida, Katsunori ;
Kato, Yoshio ;
Nakamura, Hiroshi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (06) :A417-A424