Benchmarking Single-Image Dehazing and Beyond

被引:1329
作者
Li, Boyi [1 ]
Ren, Wenqi [2 ]
Fu, Dengpan [3 ]
Tao, Dacheng [4 ,5 ]
Feng, Dan [6 ]
Zeng, Wenjun [7 ]
Wang, Zhangyang [8 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[2] Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing 100093, Peoples R China
[3] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230000, Anhui, Peoples R China
[4] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
[5] Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[7] Microsoft Res, Beijing 100080, Peoples R China
[8] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Dehazing; detection; dataset; evaluations; QUALITY ASSESSMENT; VISION; SUPERRESOLUTION; ENHANCEMENT; FRAMEWORK;
D O I
10.1109/TIP.2018.2867951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a comprehensive study and evaluation of existing single-image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called REalistic Single-Image DEhazing (RESIDE). RESIDE highlights diverse data sources and image contents, and is divided into five subsets, each serving different training or evaluation purposes. We further provide a rich variety of criteria for dehazing algorithm evaluation, ranging from full-reference metrics to no-reference metrics and to subjective evaluation, and the novel task-driven evaluation. Experiments on RESIDE shed light on the comparisons and limitations of the state-of-the-art dehazing algorithms, and suggest promising future directions.
引用
收藏
页码:492 / 505
页数:14
相关论文
共 73 条
  • [1] NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study
    Agustsson, Eirikur
    Timofte, Radu
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1122 - 1131
  • [2] [Anonymous], 2017, IEEE INT CONF COMP V, DOI DOI 10.1109/ICCVW.2017.65
  • [3] [Anonymous], 2016, LEARNING SIMULATED U
  • [4] [Anonymous], 2018, IMPROVED TECHNIQUES
  • [5] [Anonymous], 2001, P IEEE COMP SOC C CO
  • [6] [Anonymous], ADV NEURAL INFORM PR, DOI DOI 10.1109/TPAMI.2016.2577031
  • [7] [Anonymous], SEMANTIC FOGGY SCENE
  • [8] [Anonymous], IMAGE DENOISING M HI
  • [9] Non-Local Image Dehazing
    Berman, Dana
    Treibitz, Tali
    Avidan, Shai
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1674 - 1682
  • [10] Bowen Cheng, 2017, 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), P65, DOI 10.1109/ACII.2017.8273580