Benchmarking Single-Image Dehazing and Beyond

被引:1335
作者
Li, Boyi [1 ]
Ren, Wenqi [2 ]
Fu, Dengpan [3 ]
Tao, Dacheng [4 ,5 ]
Feng, Dan [6 ]
Zeng, Wenjun [7 ]
Wang, Zhangyang [8 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[2] Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing 100093, Peoples R China
[3] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230000, Anhui, Peoples R China
[4] Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
[5] Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[7] Microsoft Res, Beijing 100080, Peoples R China
[8] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会; 澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Dehazing; detection; dataset; evaluations; QUALITY ASSESSMENT; VISION; SUPERRESOLUTION; ENHANCEMENT; FRAMEWORK;
D O I
10.1109/TIP.2018.2867951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a comprehensive study and evaluation of existing single-image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called REalistic Single-Image DEhazing (RESIDE). RESIDE highlights diverse data sources and image contents, and is divided into five subsets, each serving different training or evaluation purposes. We further provide a rich variety of criteria for dehazing algorithm evaluation, ranging from full-reference metrics to no-reference metrics and to subjective evaluation, and the novel task-driven evaluation. Experiments on RESIDE shed light on the comparisons and limitations of the state-of-the-art dehazing algorithms, and suggest promising future directions.
引用
收藏
页码:492 / 505
页数:14
相关论文
共 73 条
  • [51] Bayesian Defogging
    Nishino, Ko
    Kratz, Louis
    Lombardi, Stephen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 98 (03) : 263 - 278
  • [52] BAYESIAN-ANALYSIS OF CONSISTENT PAIRED COMPARISONS
    PULKKINEN, U
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 1994, 43 (01) : 1 - 16
  • [53] Redmon J., 2017, P IEEE C COMP VIS PA, P7263
  • [54] Single Image Dehazing via Multi-scale Convolutional Neural Networks
    Ren, Wenqi
    Liu, Si
    Zhang, Hua
    Pan, Jinshan
    Cao, Xiaochun
    Yang, Ming-Hsuan
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 154 - 169
  • [55] ImageNet Large Scale Visual Recognition Challenge
    Russakovsky, Olga
    Deng, Jia
    Su, Hao
    Krause, Jonathan
    Satheesh, Sanjeev
    Ma, Sean
    Huang, Zhiheng
    Karpathy, Andrej
    Khosla, Aditya
    Bernstein, Michael
    Berg, Alexander C.
    Fei-Fei, Li
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) : 211 - 252
  • [56] Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain
    Saad, Michele A.
    Bovik, Alan C.
    Charrier, Christophe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3339 - 3352
  • [57] Make3D: Learning 3D Scene Structure from a Single Still Image
    Saxena, Ashutosh
    Sun, Min
    Ng, Andrew Y.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (05) : 824 - 840
  • [58] Scharstein D, 2003, PROC CVPR IEEE, P195
  • [59] A statistical evaluation of recent full reference image quality assessment algorithms
    Sheikh, Hamid Rahim
    Sabir, Muhammad Farooq
    Bovik, Alan Conrad
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (11) : 3440 - 3451
  • [60] Indoor Segmentation and Support Inference from RGBD Images
    Silberman, Nathan
    Hoiem, Derek
    Kohli, Pushmeet
    Fergus, Rob
    [J]. COMPUTER VISION - ECCV 2012, PT V, 2012, 7576 : 746 - 760