Bagging to improve the accuracy of a clustering procedure

被引:332
作者
Dudoit, S
Fridlyand, J
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Jain Lab, Ctr Comprehens Canc, San Francisco, CA 94143 USA
关键词
D O I
10.1093/bioinformatics/btg038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The microarray technology is increasingly being applied in biological and medical research to address a wide range of problems such as the classification of tumors. An important statistical question associated with tumor classification is the identification of new tumor classes using gene expression profiles. Essential aspects of this clustering problem include identifying accurate partitions of the tumor samples into clusters and assessing the confidence of cluster assignments for individual samples. Results: Two new resampling methods, inspired from bagging in prediction, are proposed to improve and assess the accuracy of a given clustering procedure. In these ensemble methods, a partitioning clustering procedure is applied to bootstrap learning sets and the resulting multiple partitions are combined by voting or the creation of a new dissimilarity matrix. As in prediction, the motivation behind bagging is to reduce variability in the partitioning results via averaging. The performances of the new and existing methods were compared using simulated data and gene expression data from two recently published cancer microarray studies. The bagged clustering procedures were in general at least as accurate and often substantially more accurate than a single application of the partitioning clustering procedure. A valuable by-product of bagged clustering are the cluster votes which can be used to assess the confidence of cluster assignments for individual observations.
引用
收藏
页码:1090 / 1099
页数:10
相关论文
共 16 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    Alon, U
    Barkai, N
    Notterman, DA
    Gish, K
    Ybarra, S
    Mack, D
    Levine, AJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) : 6745 - 6750
  • [3] [Anonymous], 1979, Multivariate analysis
  • [4] Molecular classification of cutaneous malignant melanoma by gene expression profiling
    Bittner, M
    Meitzer, P
    Chen, Y
    Jiang, Y
    Seftor, E
    Hendrix, M
    Radmacher, M
    Simon, R
    Yakhini, Z
    Ben-Dor, A
    Sampas, N
    Dougherty, E
    Wang, E
    Marincola, F
    Gooden, C
    Lueders, J
    Glatfelter, A
    Pollock, P
    Carpten, J
    Gillanders, E
    Leja, D
    Dietrich, K
    Beaudry, C
    Berens, M
    Alberts, D
    Sondak, V
    Hayward, N
    Trent, J
    [J]. NATURE, 2000, 406 (6795) : 536 - 540
  • [5] Breiman L, 1998, ANN STAT, V26, P801
  • [6] Bagging predictors
    Breiman, L
    [J]. MACHINE LEARNING, 1996, 24 (02) : 123 - 140
  • [7] Comparison of discrimination methods for the classification of tumors using gene expression data
    Dudoit, S
    Fridlyand, J
    Speed, TP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 77 - 87
  • [8] DUDOIT S, 2001, 600 U CAL DEP STAT
  • [9] Dudoit S, 2002, GENOME BIOL, V3
  • [10] A decision-theoretic generalization of on-line learning and an application to boosting
    Freund, Y
    Schapire, RE
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) : 119 - 139