Adsorption of nucleotides on the rutile (110) surface

被引:28
作者
Gemming, Sibylle [1 ]
Enyashin, Andrey N. [2 ,3 ]
Frenzel, Johannes [4 ]
Seifert, Gotthard [3 ]
机构
[1] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany
[2] Tech Univ Dresden, Dresden, Germany
[3] Inst Solid State Chem, Ekaterinburg, Russia
[4] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada
关键词
Nucleic acids; Adsorption; Rutile surface; Nanotubes; CARBON NANOTUBE; DNA; TIO2; FUNCTIONALIZATION; TRANSISTORS; ENERGETICS; DEVICE; ACID; DFT;
D O I
10.3139/146.110337
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The present study aims at the computer-aided design of suitably functionalized oxide surfaces for the integration of nanotubes into multi-purpose nano-electronic devices. The adsorption of the nucleotide cytidine monophosphate on the rutile (110) surface is investigated by density-functional-based tight-binding calculations. The nucleotide favors anchoring with two oxygen atoms of its phosphate part. Adsorption occurs preferentially at two neighboring five-fold coordinated Ti atoms along the [001] direction, thus opening a pathway to an ordered adsorption of nanotubes along [001]. The electronic densities of state show that the aromatic part of the cytidine residue remains unchanged upon adsorption on rutile. This implies that no significant changes occur in the nanotube binding capacity by it-stacking of the aromatic part, hence, nucleotide-functionalized oxide surfaces are ideal substrates for the ordered, stable and electronically and chemically inert immobilization of nanotubes.
引用
收藏
页码:758 / 764
页数:7
相关论文
共 50 条
[1]   Crystal chemistry of interfaces formed between two different non-metallic, inorganic structures [J].
Materials Department, University of California, Santa Barbara, United States ;
不详 .
Int. J. Mater. Res., 2007, 12 (1222-1229) :1222-1229
[2]   Carbon nanotubes for high-performance electronics - Progress and prospect [J].
Appenzeller, J. .
PROCEEDINGS OF THE IEEE, 2008, 96 (02) :201-211
[3]   Carbon nanotube transistors - chemical functionalization and device characterization [J].
Balasubramanian, Kannan ;
Lee, Eduardo J. H. ;
Weitz, Ralf Thomas ;
Burghard, Marko ;
Kern, Klaus .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (03) :633-646
[4]   A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations [J].
Bates, SP ;
Kresse, G ;
Gillan, MJ .
SURFACE SCIENCE, 1997, 385 (2-3) :386-394
[5]   Electronic and transport properties of nanotubes [J].
Charlier, Jean-Christophe ;
Blase, Xavier ;
Roche, Stephan .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :677-732
[6]   Relaxation of TiO2(110)-(1x1) using surface X-ray diffraction [J].
Charlton, G ;
Howes, PB ;
Nicklin, CL ;
Steadman, P ;
Taylor, JSG ;
Muryn, CA ;
Harte, SP ;
Mercer, J ;
McGrath, R ;
Norman, D ;
Turner, TS ;
Thornton, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :495-498
[7]   Externally assembled gate-all-around carbon nanotube field-effect transistor [J].
Chen, Zhihong ;
Farmer, Damon ;
Xu, Sheng ;
Gordon, Roy ;
Avouris, Phaedon ;
Appenzeller, Joerg .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (02) :183-185
[8]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[9]   Intrinsic defects on a TiO2(110)(1x1) surface and their reaction with oxygen:: a scanning tunneling microscopy study [J].
Diebold, U ;
Lehman, J ;
Mahmoud, T ;
Kuhn, M ;
Leonardelli, G ;
Hebenstreit, W ;
Schmid, M ;
Varga, P .
SURFACE SCIENCE, 1998, 411 (1-2) :137-153
[10]  
Dresselhaus M.S., 2001, TOPICS APPL PHYS, V80