SU(n)-connections and noncommutative differential geometry

被引:17
作者
Dubois-Violette, M [1 ]
Masson, T [1 ]
机构
[1] Univ Paris 11, Phys Theor & Hautes Energies Lab, CNRS, URA D0063, F-91405 Orsay, France
关键词
SU (n) connections; noncommutative differential geometry;
D O I
10.1016/S0393-0440(97)00033-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the noncommutative differential geometry of the algebra of endomorphisms of any SU(n)-vector bundle. We show that ordinary connections on such SU(n)-vector bundles can be interpreted in a natural way as a noncommutative 1-form on this algebra for the differential calculus based on derivations. We interpret the Lie algebra of derivations of the algebra of endomorphisms as a Lie algebroid. Then we look at noncommutative connections as generalizations of these usual connections. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:104 / 118
页数:15
相关论文
共 9 条
[1]  
CARTAN H, 1950, C TOPOLOGIE BRUXELLE, P1951
[2]  
Connes A, 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41, DOI 10.1007/BF02698807
[3]  
DUBOISVIOLETTE M, 1994, CR ACAD SCI I-MATH, V319, P927
[4]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321
[5]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND NEW MODELS OF GAUGE-THEORY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :323-330
[6]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[7]  
DUBOISVIOLETTE M, 1991, LECT NOTES PHYSICS, V375
[8]  
MACKENZIE KCH, 1987, LECT NOTE SERIES, V124
[9]   Submanifolds and quotient manifolds in noncommutative geometry [J].
Masson, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2484-2497