Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase

被引:63
作者
Lim, James [1 ]
Cirigliano, Nicolas [1 ]
Wang, John [1 ]
Dunn, Bruce [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1039/b618422g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bilirubin oxidase encapsulated within a silica sol-gel/carbon nanotube composite electrode effectively catalyzed the reduction of molecular oxygen into water through direct electron transfer at the carbon nanotube electrode surface. In this nanocomposite approach, the silica matrix is designed to be sufficiently porous for substrate molecules to have access to the enzyme and yet provides a protective cage for immobilization without affecting biological activity. The incorporation of carbon nanotubes adds electrical connectivity and increases active electrode surface area. The standard surface electron transfer rate constant was calculated to be 59 s(-1) which indicates that the carbon nanotube side walls are primarily responsible for electron transfer. The use of direct electron transfer processes simplifies biofuel cell fabrication by eliminating the need for redox mediator and ion-conducting separators.
引用
收藏
页码:1809 / 1814
页数:6
相关论文
共 21 条
[1]  
BARD AJ, 2001, ELECTROCHEMICAL METH, P6
[2]   Improved properties of bilirubin oxidase by entrapment in alginate-silicate sol-gel matrix [J].
Chen, JP ;
Wang, HY .
BIOTECHNOLOGY TECHNIQUES, 1998, 12 (11) :851-853
[3]   Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications [J].
Ghindilis, AL ;
Atanasov, P ;
Wilkins, E .
ELECTROANALYSIS, 1997, 9 (09) :661-674
[4]   Direct electron transfer of glucose oxidase on carbon nanotubes [J].
Guiseppi-Elie, A ;
Lei, CH ;
Baughman, RH .
NANOTECHNOLOGY, 2002, 13 (05) :559-564
[5]   Glucose oxidase anode for biofuel cell based on direct electron transfer [J].
Ivnitski, Dmitri ;
Branch, Brittany ;
Atanassov, Plamen ;
Apblett, Christopher .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1204-1210
[6]   A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V [J].
Kim, HH ;
Mano, N ;
Zhang, XC ;
Heller, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (02) :A209-A213
[7]   Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles [J].
Li, J ;
Cassell, A ;
Delzeit, L ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (36) :9299-9305
[8]   Nanostructured sol-gel electrodes for biofuel cells [J].
Lim, James ;
Malati, Peter ;
Bonet, Francois ;
Dunn, Bruce .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :A140-A145
[9]   A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions [J].
Mano, N ;
Heller, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :A1136-A1138
[10]   Microchip-based ethanol/oxygen biofuel cell [J].
Moore, CM ;
Minteer, SD ;
Martin, RS .
LAB ON A CHIP, 2005, 5 (02) :218-225