On the unification of heterotic strings, M theory and E(∞) theory

被引:123
作者
El Naschie, MS [1 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 9EW, England
关键词
D O I
10.1016/S0960-0779(00)00108-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work points out the existence of various theoretical and numerical evidences for a possibly deep connection between the high but finite dimensionality of heterotic strings and M theory on the one side and the infinite-dimensional E-(infinity) Cantorian theory on the other. It is conjectured that various modern strings theories are presumably the best possible description of actual quantum space-time within a finite-dimensional theory. It is further conjectured that the E-(infinity) theory provides the mathematical framework for a possible stringent proof of this conjecture. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2397 / 2408
页数:12
相关论文
共 14 条
[1]   A MONSTER LIE-ALGEBRA [J].
BORCHERDS, RE ;
CONWAY, JH ;
QUEEN, L ;
SLOANE, NJA .
ADVANCES IN MATHEMATICS, 1984, 53 (01) :75-79
[2]   Is quantum space-time infinite dimensional [J].
Castro, C .
CHAOS SOLITONS & FRACTALS, 2000, 11 (11) :1663-1670
[3]   Multi-dimensional cantor sets in classical and quantum mechanics [J].
El Naschie, M.S. .
Chaos, solitons and fractals, 1992, 2 (02) :211-220
[4]   Correlation in E(∞) [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (13) :1993-1994
[5]   On the electroweak mixing angle in E(∞) [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (11) :1803-1807
[6]   Towards a geometrical theory for the unification of all fundamental forces [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (09) :1459-1469
[7]  
El Naschie MS, 1999, CHAOS SOLITON FRACT, V10, P567, DOI 10.1016/S0960-0779(98)00313-0
[8]   On the sporadic 196884-dimensional group, strings and E(∞) spacetime [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 1999, 10 (06) :1103-1109
[9]   Semiclassical dimensions, quantum groups and the Cantorian manifold [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1137-1144