A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials

被引:26
作者
Ferreri, GC
Marzelli, M
Rens, W
O'Neill, RJ
机构
[1] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA
[2] Univ Cambridge, Dept Clin Vet Med, Ctr Vet Sci, Cambridge CB3 0ES, England
关键词
D O I
10.1159/000079580
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Studies of chromosome evolution have focused heavily on the evolution of conserved syntenic, gene-rich domains. It is obvious, however, that the centromere plays an equally important role in chromosome evolution, through its involvement in fissions, centric fusions, translocations, inversions and centric shifts. It is unclear how the centromere, either as a functioning unit of the chromosome or as a DNA sequence motif, has been involved in these processes. Marsupials of the family Macropodidae (kangaroos, wallabies, rat kangaroos and potoroos) offer unique insights into current theories expositing centromere emergence during karyotypic diversification and speciation. Tracing the genomic distribution of centromeric sequences in a model macropodine (subfamily Macropodinae: kangaroos and wallabies) species, Macropus eugenii (tammar wallaby), indicates these sequences have played an important role in chromosome evolution through possible segmental duplications associated with phylogenetically conserved breaks of synteny, pericentromeric and subtelomeric regions. Hybrids between different kangaroo species provide evidence that the centromere is unstable within this group of mammals and is involved in a large number of chromosome aberrations. A better understanding of the genetic and epigenetic factors that define centromeres and how centromeres may mediate changes in chromosome architecture are critical not only to our understanding of basic cellular functioning but also to our understanding of the process of speciation. Copyright (C) 2004 S. Karger AG, Basel.
引用
收藏
页码:115 / 118
页数:4
相关论文
共 23 条
[1]   Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements [J].
Armengol, L ;
Pujana, MA ;
Cheung, J ;
Scherer, SW ;
Estivill, X .
HUMAN MOLECULAR GENETICS, 2003, 12 (17) :2201-2208
[2]   Hotspots of mammalian chromosomal evolution [J].
Bailey, JA ;
Baertsch, R ;
Kent, WJ ;
Haussler, D ;
Eichler, EE .
GENOME BIOLOGY, 2004, 5 (04)
[3]   An Alu transposition model for the origin and expansion of human segmental duplications [J].
Bailey, JA ;
Liu, G ;
Eichler, EE .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (04) :823-834
[4]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[5]   Segmental duplications: Organization and impact within the current Human Genome Project assembly [J].
Bailey, JA ;
Yavor, AM ;
Massa, HF ;
Trask, BJ ;
Eichler, EE .
GENOME RESEARCH, 2001, 11 (06) :1005-1017
[6]   Human chromosome 19 and related regions in mouse: Conservative and lineage-specific evolution [J].
Dehal, P ;
Predki, P ;
Olsen, AS ;
Kobayashi, A ;
Folta, P ;
Lucas, S ;
Land, M ;
Terry, A ;
Zhou, CLE ;
Rash, S ;
Zhang, Q ;
Gordon, L ;
Kim, J ;
Elkin, C ;
Pollard, MJ ;
Richardson, P ;
Rokhsar, D ;
Uberbacher, E ;
Hawkins, T ;
Branscomb, E ;
Stubbs, L .
SCIENCE, 2001, 293 (5527) :104-111
[7]   Structural dynamics of eukaryotic chromosome evolution [J].
Eichler, EE ;
Sankoff, D .
SCIENCE, 2003, 301 (5634) :793-797
[8]   RADIATION OF CHROMOSOME SHUFFLES [J].
ELDRIDGE, MDB ;
CLOSE, RL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1993, 3 (06) :915-922
[9]   Marsupial genetics and genomics [J].
Graves, JAM ;
Westerman, M .
TRENDS IN GENETICS, 2002, 18 (10) :517-521
[10]  
Hayman D.L., 1987, Chromosomes Today, V9, P91