Machine learning of accurate energy-conserving molecular force fields

被引:834
作者
Chmiela, Stefan [1 ]
Tkatchenko, Alexandre [2 ,3 ]
Sauceda, Huziel E. [3 ]
Poltavsky, Igor [2 ]
Schuett, Kristof T. [1 ]
Mueller, Klaus-Robert [1 ,4 ,5 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[4] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
[5] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 05期
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
APPROXIMATION; DYNAMICS;
D O I
10.1126/sciadv.1603015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol(-1) for energies and 1 kcal mol(-1) angstrom(-1) for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[2]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[5]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[6]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955
[7]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[8]   Representing molecule-surface interactions with symmetry-adapted neural networks [J].
Behler, Jorg ;
Lorenz, Sonke ;
Reuter, Karsten .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (01)
[9]   Learning scheme to predict atomic forces and accelerate materials simulations [J].
Botu, V. ;
Ramprasad, R. .
PHYSICAL REVIEW B, 2015, 92 (09)
[10]  
Caponnetto A, 2008, J MACH LEARN RES, V9, P1615