Impact of the ΔF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure

被引:229
作者
Lewis, HA [1 ]
Zhao, X
Wang, C
Sauder, JM
Rooney, I
Noland, BW
Lorimer, D
Kearins, MC
Conners, K
Condon, B
Maloney, PC
Guggino, WB
Hunt, JF
Emtage, S
机构
[1] Struct GenomiX Inc, San Diego, CA 92121 USA
[2] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[3] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.M410968200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator ( CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.
引用
收藏
页码:1346 / 1353
页数:8
相关论文
共 31 条
[21]   Structure and mechanism of ABC transporters [J].
Schmitt, L ;
Tampé, R .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (06) :754-760
[22]   The denatured state (the other half of the folding equation) and its role in protein stability [J].
Shortle, D .
FASEB JOURNAL, 1996, 10 (01) :27-34
[23]   ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer [J].
Smith, PC ;
Karpowich, N ;
Millen, L ;
Moody, JE ;
Rosen, J ;
Thomas, PJ ;
Hunt, JF .
MOLECULAR CELL, 2002, 10 (01) :139-149
[24]   IDENTIFICATION OF REVERTANTS FOR THE CYSTIC-FIBROSIS DELTA-F508 MUTATION USING STE6-CFTR CHIMERAS IN YEAST [J].
TEEM, JL ;
BERGER, HA ;
OSTEDGAARD, LS ;
RICH, DP ;
TSUI, LC ;
WELSH, MJ .
CELL, 1993, 73 (02) :335-346
[25]  
Teem JL, 1996, RECEPTOR CHANNEL, V4, P63
[26]  
THOMAS PJ, 1992, J BIOL CHEM, V267, P5727
[27]   ALTERED PROTEIN FOLDING MAY BE THE MOLECULAR-BASIS OF MOST CASES OF CYSTIC-FIBROSIS [J].
THOMAS, PJ ;
KO, YH ;
PEDERSEN, PL .
FEBS LETTERS, 1992, 312 (01) :7-9
[28]  
WARD CL, 1994, J BIOL CHEM, V269, P25710
[29]   The crystal structure of the MJ0796 ATP-binding cassette - Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter [J].
Yuan, YR ;
Blecker, S ;
Martsinkevich, O ;
Millen, L ;
Thomas, PJ ;
Hunt, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :32313-32321
[30]   Limited proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR [J].
Zhang, F ;
Kartner, N ;
Lukacs, GL .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (03) :180-183