Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons

被引:41
作者
Cuntz, Hermann
Haag, Juergen
Forstner, Friedrich
Segev, Idan
Borst, Alexander
机构
[1] UCL, Wolfson Inst Biomed Res, Dept Physiol, London WC1E 6BT, England
[2] Max Planck Inst Neurobiol, Dept Syst & Computat Neurobiol, D-82152 Martinsried, Germany
[3] Bernstein Ctr Computat Neurosci, D-81377 Munich, Germany
[4] Hebrew Univ Jerusalem, Interdisciplinary Ctr Neural Computat, IL-91904 Jerusalem, Israel
[5] Hebrew Univ Jerusalem, Dept Neurobiol, IL-91904 Jerusalem, Israel
关键词
imaging; insect; model; optic flow;
D O I
10.1073/pnas.0703697104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.
引用
收藏
页码:10229 / 10233
页数:5
相关论文
共 32 条
[11]   Insect-inspired estimation of egomotion [J].
Franz, MO ;
Chahl, JS ;
Krapp, HG .
NEURAL COMPUTATION, 2004, 16 (11) :2245-2260
[12]   Fly flight: A model for the neural control of complex behavior [J].
Frye, MA ;
Dickinson, MH .
NEURON, 2001, 32 (03) :385-388
[13]   Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio [J].
Haag, J ;
Denk, W ;
Borst, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (46) :16333-16338
[14]   Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons [J].
Haag, J ;
Borst, A .
NATURE NEUROSCIENCE, 2004, 7 (06) :628-634
[15]   Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons [J].
Haag, J ;
Borst, A .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (02) :1039-1051
[16]   Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly [J].
Haag, J ;
Borst, A .
JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 2005, 191 (05) :445-454
[17]   Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron [J].
Haag, Juergen ;
Wertz, Adrian ;
Borst, Alexander .
JOURNAL OF NEUROSCIENCE, 2007, 27 (08) :1992-2000
[18]   THE NUMBER AND STRUCTURE OF GIANT VERTICAL CELLS (VS) IN THE LOBULA PLATE OF THE BLOWFLY CALLIPHORA-ERYTHROCEPHALA [J].
HENGSTENBERG, R ;
HAUSEN, K ;
HENGSTENBERG, B .
JOURNAL OF COMPARATIVE PHYSIOLOGY, 1982, 149 (02) :163-177
[19]   The NEURON simulation environment [J].
Hines, ML ;
Carnevale, NT .
NEURAL COMPUTATION, 1997, 9 (06) :1179-1209
[20]   Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons [J].
Karmeier, K. ;
van Hateren, J. H. ;
Kern, R. ;
Egelhaaf, M. .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (03) :1602-1614