Phonon engineering in nanostructures for solid-state energy conversion

被引:69
作者
Chen, G [1 ]
Zeng, T [1 ]
Borca-Tasciuc, T [1 ]
Song, D [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aeronaut Engn, Los Angeles, CA 90095 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2000年 / 292卷 / 02期
基金
美国国家科学基金会;
关键词
phonon engineering; nanostructures; solid-state energy conversion;
D O I
10.1016/S0921-5093(00)00999-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state energy conversion technologies such as thermoelectric and thermionic refrigeration and power generation require materials with low thermal conductivity but good electrical conductivity, which are difficult to realize in bulk semiconductors. Nanostructures such as quantum wires and quantum wells provide alternative approaches to improve the solid-state energy conversion efficiency through size effects on the electron and phonon transport. In this paper, we discuss the possibility of engineering the phonon transport in nanostructures, with emphases on the thermal conductivity of superlattices. Following a general discussion on the directions for reducing the lattice thermal conductivity in nanostructures, specific modeling results on the phonon transport in superlattices will be presented and compared with recent experimental studies to illustrate the potential approaches and remaining questions. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 35 条
[1]   Anisotropic thermal conductivity of a Si Ge superlattice [J].
Borca-Tasciuc, T ;
Song, D ;
Liu, JL ;
Chen, G ;
Wang, KL ;
Sun, X ;
Dresselhaus, MS ;
Radetic, T ;
Gronsky, R .
THERMOELECTRIC MATERIALS 1998 - THE NEXT GENERATION MATERIALS FOR SMALL-SCALE REFRIGERATION AND POWER GENERATION APPLICATIONS, 1999, 545 :473-478
[2]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[3]   Thermal conductivity of GaAs/AlAs superlattices [J].
Capinski, WS ;
Cardona, M ;
Katzer, DS ;
Maris, HJ ;
Ploog, K ;
Ruf, T .
PHYSICA B, 1999, 263 :530-532
[4]   Thermal conductivity of GaAs/AlAs superlattices [J].
Capinski, WS ;
Maris, HJ .
PHYSICA B-CONDENSED MATTER, 1996, 219-20 :699-701
[5]   Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures [J].
Chen, G .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (02) :220-229
[6]   THERMAL-DIFFUSIVITY MEASUREMENT OF GAAS/ALGAAS THIN-FILM STRUCTURES [J].
CHEN, G ;
TIEN, CL ;
WU, X ;
SMITH, JS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1994, 116 (02) :325-331
[7]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[8]   Thermal conductivity and heat transfer in superlattices [J].
Chen, G ;
Neagu, M .
APPLIED PHYSICS LETTERS, 1997, 71 (19) :2761-2763
[9]  
CHEN G, 1998, ICT98, P202
[10]  
CHEN G, IN PRESS J HEAT TRAN