Non-equilibrium steady states of the XY chain

被引:109
作者
Aschbacher, WH
Pillet, CA
机构
[1] Univ Toulon & Var, PHYMAT, F-83957 La Garde, France
[2] CNRS Marseille Luminy, CPT, FRUMAM, F-13288 Marseille 9, France
关键词
XY chain; Jordan-Wigner transformation; non-equilibrium steady state; Bogoliubov automorphism; scattering theory; ENTROPY PRODUCTION; MASTER SYMMETRIES; EQUILIBRIUM; TRANSPORT; MODEL;
D O I
10.1023/A:1024619726273
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the non-equilibrium statistical mechanics of the two-sided XY chain. We start from an initial state in which the left and right part of the lattice, Z(L)={x is an element of Z \ x < -M}, Z(R)={x is an element of Z vertical bar x > M}, are at inverse temperatures beta(L) and beta(R). Using a simple scattering theoretic analysis, we construct the unique non-equilibrium steady state (NESS). This state depends on beta(L) and beta(R), but not on the choice of the decoupling parameter M. We prove that in the non-equilibrium case, beta(L)not equalbeta(R), this state has strictly positive entropy production.
引用
收藏
页码:1153 / 1175
页数:23
相关论文
共 31 条
[1]   Universality of transport properties in equilibrium, the goldstone theorem, and chiral anomaly [J].
Alekseev, AY ;
Cheianov, VV ;
Frohlich, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3503-3506
[2]  
[Anonymous], MATH PHYS STUD
[3]  
[Anonymous], 1979, Methods of modern mathematical physics
[4]   ON THE DYNAMICS AND ERGODIC PROPERTIES OF THE XY MODEL [J].
ARAKI, H ;
BAROUCH, E .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (02) :327-345
[5]   MASTER SYMMETRIES OF THE XY MODEL [J].
ARAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :155-176
[6]   ON THE XY-MODEL ON 2-SIDED INFINITE CHAIN [J].
ARAKI, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) :277-296
[7]  
Araki H., 1970, Publ. Res. Inst. Math. Sci., V6, P385, DOI DOI 10.2977/PRIMS/1195193913
[8]  
BAROUCH E, 1985, STUD APPL MATH, V73, P221
[9]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[10]  
Bratteli O., 1997, OPERATOR ALGEBRAS QU, V2