A clockwork organ

被引:40
作者
Whitmore, D [1 ]
Cermakian, N [1 ]
Crosio, C [1 ]
Foulkes, NS [1 ]
Pando, MP [1 ]
Travnickova, Z [1 ]
Sassone-Corsi, P [1 ]
机构
[1] ULP, CNRS, INSERM, Inst Genet & Biol Mol & Cellulaire, F-7404 Illkirch Graffenstaden, France
关键词
casein kinase 1 epsilon; circadian clock; clock gene; period gene; peripheral oscillators; suprachiasmatic nucleus;
D O I
10.1515/BC.2000.102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The vertebrate circadian clock was thought to be highly localized to specific anatomical structures: the mammalian suprachiasmatic nucleus (SCN), and the retina and pineal gland in lower vertebrates. However, recent findings in the zebrafish, rat and in cultured cells have suggested that the vertebrate circadian timing system may in fact be highly distributed, with most if not all cells containing a clock. Our understanding of the clock mechanism has progressed extensively through the use of mutant screening and forward genetic approaches. The first vertebrate clock gene was identified only a few years ago in the mouse by such an approach. More recently, using a syntenic comparative genetic approach, the molecular basis of the the tau mutation in the hamster was determined. The tau gene in the hamster appears to encode casein kinase 1 epsilon, a protein previously shown to be important for PER protein turnover in the Drosophila circadian system. A number of additional clock genes have now been described. These proteins appear to play central roles in the transcription-translation negative feedback loop responsible for clock function. Post-translational modification, protein dimerization and nuclear transport all appear to be essential features of how clocks are thought to tick.
引用
收藏
页码:793 / 800
页数:8
相关论文
共 49 条
[1]   Functional identification of the mouse circadian Clock gene by transgenic BAC rescue [J].
Antoch, MP ;
Song, EJ ;
Chang, AM ;
Vitaterna, MH ;
Zhao, YL ;
Wilsbacher, LD ;
Sangoram, AM ;
King, DP ;
Pinto, LH ;
Takahashi, JS .
CELL, 1997, 89 (04) :655-667
[2]   A serum shock induces circadian gene expression in mammalian tissue culture cells [J].
Balsalobre, A ;
Damiola, F ;
Schibler, U .
CELL, 1998, 93 (06) :929-937
[3]   Cycling vrille expression is required for a functional Drosophila clock [J].
Blau, J ;
Young, MW .
CELL, 1999, 99 (06) :661-671
[4]   Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function [J].
Cermakian, N ;
Whitmore, D ;
Foulkes, NS ;
Sassone-Corsi, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (08) :4339-4344
[5]   Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms [J].
Field, MD ;
Maywood, ES ;
O'Brien, JA ;
Weaver, DR ;
Reppert, SM ;
Hastings, MH .
NEURON, 2000, 25 (02) :437-447
[6]   Role of the CLOCK protein in the mammalian circadian mechanism [J].
Gekakis, N ;
Staknis, D ;
Nguyen, HB ;
Davis, FC ;
Wilsbacher, LD ;
King, DP ;
Takahashi, JS ;
Weitz, CJ .
SCIENCE, 1998, 280 (5369) :1564-1569
[7]   ISOLATION OF TIMELESS BY PER PROTEIN-INTERACTION - DEFECTIVE INTERACTION BETWEEN TIMELESS PROTEIN AND LONG-PERIOD MUTANT PER(L) [J].
GEKAKIS, N ;
SAEZ, L ;
DELAHAYEBROWN, AM ;
MYERS, MP ;
SEHGAL, A ;
YOUNG, MW ;
WEITZ, CJ .
SCIENCE, 1995, 270 (5237) :811-815
[8]   Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos [J].
Green, CB ;
Liang, MY ;
Steenhard, BM ;
Besharse, JC .
DEVELOPMENTAL BRAIN RESEARCH, 1999, 117 (01) :109-116
[9]   FEEDBACK OF THE DROSOPHILA PERIOD GENE-PRODUCT ON CIRCADIAN CYCLING OF ITS MESSENGER-RNA LEVELS [J].
HARDIN, PE ;
HALL, JC ;
ROSBASH, M .
NATURE, 1990, 343 (6258) :536-540
[10]   Activating inhibitors and inhibiting activators: a day in the life of a fly [J].
Hardin, PE .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (05) :642-647