Amyloid fibers provide structural integrity to Bacillus subtilis biofilms

被引:591
作者
Romero, Diego [1 ]
Aguilar, Claudio [1 ]
Losick, Richard [2 ]
Kolter, Roberto [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA
[2] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
cell-to-cell interactions; extracellular matrix; TasA; FIBRIL FORMATION; CONGO RED; PROTEIN; BACTERIA; MATRIX; COAT; POLYMERIZATION; HYDROPHOBINS; BIOGENESIS; RESISTANCE;
D O I
10.1073/pnas.0910560107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacillus subtilis forms biofilms whose constituent cells are held together by an extracellular matrix. Previous studies have shown that the protein TasA and an exopolysaccharide are the main components of the matrix. Given the importance of TasA in biofilm formation, we characterized the physicochemical properties of this protein. We report that purified TasA forms fibers of variable length and 10-15 nm in width. Biochemical analyses, in combination with the use of specific dyes and microscopic analyses, indicate that TasA forms amyloid fibers. Consistent with this hypothesis, TasA fibers required harsh treatments (e.g., formic acid) to be depolymerized. When added to a culture of a tasA mutant, purified TasA restored wild-type biofilm morphology, indicating that the purified protein retained biological activity. We propose that TasA forms amyloid fibers that bind cells together in the biofilm.
引用
收藏
页码:2230 / 2234
页数:5
相关论文
共 42 条
[31]   Biofilm formation by Escherichia coli O157:H7 on stainless steel:: Effect of exopolysaccharide and curli production on its resistance to chlorine [J].
Ryu, JH ;
Beuchat, LR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (01) :247-254
[32]   A Bacillus subtilis secreted protein with a role in endospore coat assembly and function [J].
Serrano, M ;
Zilhao, R ;
Ricca, E ;
Ozin, AJ ;
Moran, CP ;
Henriques, AO .
JOURNAL OF BACTERIOLOGY, 1999, 181 (12) :3632-3643
[33]  
Stöver AG, 1999, J BACTERIOL, V181, P1664
[34]   Common core structure of amyloid fibrils by synchrotron X-ray diffraction [J].
Sunde, M ;
Serpell, LC ;
Bartlam, M ;
Fraser, PE ;
Pepys, MB ;
Blake, CCF .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (03) :729-739
[35]   Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+] [J].
Tessier, Peter M. ;
Lindquist, Susan .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (06) :598-605
[36]   Charge attraction and β propensity are necessary for amyloid fibril formation from tetrapeptides [J].
Tjernberg, L ;
Hosia, W ;
Bark, N ;
Thyberg, J ;
Johansson, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (45) :43243-43246
[37]   Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins [J].
Tompa, P. .
FEBS JOURNAL, 2009, 276 (19) :5406-5415
[38]   Soluble Amyloid β-Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity [J].
Valincius, Gintaras ;
Heinrich, Frank ;
Budvytyte, Rima ;
Vanderah, David J. ;
McGillivray, Duncan J. ;
Sokolov, Yuri ;
Hall, James E. ;
Losche, Mathias .
BIOPHYSICAL JOURNAL, 2008, 95 (10) :4845-4861
[39]   Control of cell fate by the formation of an architecturally complex bacterial community [J].
Vlamakis, Hera ;
Aguilar, Claudio ;
Losick, Richard ;
Kolter, Roberto .
GENES & DEVELOPMENT, 2008, 22 (07) :945-953
[40]   In vitro polymerization of a functional Escherichia coli amyloid protein [J].
Wang, Xuan ;
Smith, Daniel R. ;
Jones, Jonathan W. ;
Chapman, Matthew R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (06) :3713-3719