Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site

被引:105
作者
Arand, M
Hallberg, BM
Zou, JY
Bergfors, T
Oesch, F
van der Werf, MJ
de Bont, JAM
Jones, TA
Mowbray, SL
机构
[1] Swedish Univ Agr Sci, Dept Mol Biosci, BMC, S-75124 Uppsala, Sweden
[2] Univ Wurzburg, Dept Toxicol, D-97078 Wurzburg, Germany
[3] Uppsala Univ, Dept Cell & Mol Biol, BMC, S-75124 Uppsala, Sweden
[4] Johannes Gutenberg Univ Mainz, Inst Toxicol, D-55131 Mainz, Germany
[5] Wageningen Univ Agr, Div Ind Microbiol, NL-6700 EV Wageningen, Netherlands
关键词
crystal structure; enantioselectivity; epoxide hydrolase; mechanism; monoterpene degradation;
D O I
10.1093/emboj/cdg275
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure of the limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis, solved using single-wavelength anomalous dispersion from a selenomethionine-substituted protein and refined at 1.2 Angstrom resolution. This enzyme represents a completely different structure and a novel one-step mechanism. The fold features a highly curved six-stranded mixed beta-sheet, with four alpha-helices packed onto it to create a deep pocket. Although most residues lining this pocket are hydrophobic, a cluster of polar groups, including an Asp-Arg-Asp triad, interact at its deepest point. Site-directed mutagenesis supports the conclusion that this is the active site. Further, a 1.7 Angstrom resolution structure shows the inhibitor valpromide bound at this position, with its polar atoms interacting directly with the residues of the triad. We suggest that several bacterial proteins of currently unknown function will share this structure and, in some cases, catalytic properties.
引用
收藏
页码:2583 / 2592
页数:10
相关论文
共 50 条
[31]   CRYSTAL-STRUCTURE OF SCYTALONE DEHYDRATASE - A DISEASE DETERMINANT OF THE RICE PATHOGEN, MAGNAPORTHE-GRISEA [J].
LUNDQVIST, T ;
RICE, J ;
HODGE, CN ;
BASARAB, GS ;
PIERCE, J ;
LINDQVIST, Y .
STRUCTURE, 1994, 2 (10) :937-944
[32]  
McPherson A., 1982, PREPARATION ANAL PRO
[33]   Visualization of a covalent intermediate between microsomal epoxide hydrolase, but not cholesterol epoxide hydrolase, and their substrates [J].
Muller, F ;
Arand, M ;
Frank, H ;
Seidel, A ;
Hinz, W ;
Winkler, L ;
Hanel, K ;
Blee, E ;
Beetham, JK ;
Hammock, BD ;
Oesch, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 245 (02) :490-496
[34]   Refinement of macromolecular structures by the maximum-likelihood method [J].
Murshudov, GN ;
Vagin, AA ;
Dodson, EJ .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1997, 53 :240-255
[35]   The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1 -: An enzyme to detoxify harmful epoxides [J].
Nardini, M ;
Ridder, IS ;
Rozeboom, HJ ;
Kalk, KH ;
Rink, R ;
Janssen, DB ;
Dijkstra, BW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :14579-14586
[36]   Processing of X-ray diffraction data collected in oscillation mode [J].
Otwinowski, Z ;
Minor, W .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :307-326
[37]  
Otwinowski Z., 1991, ISOMORPHOUS REPLACEM, P80
[38]   wARP: Improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models [J].
Perrakis, A ;
Sixma, TK ;
Wilson, KS ;
Lamzin, VS .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1997, 53 :448-455
[39]   Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter [J].
Rink, R ;
Kingma, J ;
Spelberg, JHL ;
Janssen, DB .
BIOCHEMISTRY, 2000, 39 (18) :5600-5613
[40]   An algorithm for automatic indexing of oscillation images using Fourier analysis [J].
Steller, I ;
Bolotovsky, R ;
Rossmann, MG .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1997, 30 :1036-1040