New description of orbital motion with arbitrary angular momenta

被引:68
作者
Suzuki, Y [1 ]
Usukura, J
Varga, K
机构
[1] Niigata Univ, Fac Sci, Dept Phys, Niigata 95021, Japan
[2] Niigata Univ, Grad Sch Sci & Technol, Niigata 95021, Japan
[3] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary
关键词
D O I
10.1088/0953-4075/31/1/007
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A formulation is presented for a variational calculation of N-body systems on a correlated Gaussian basis with arbitrary angular momenta. The rotational motion of the system is described with a single spherical harmonic of the total angular momentum L, and thereby needs no explicit coupling of partial waves between particles. A simple generating function for the correlated Gaussian is exploited to derive the matrix element. The formulation is applied to various Coulomb three-body systems such as e(-)e(-)e(+), tt mu, td mu, and alpha e(-)e(-) up to L = 4 in order to show its usefulness and versatility. A stochastic selection of the basis functions yields good results for various angular momentum states.
引用
收藏
页码:31 / 48
页数:18
相关论文
共 40 条
[22]   VARIATIONAL CALCULATION OF GROUND-STATE ENERGY OF POSITRONIUM NEGATIVE-IONS [J].
HO, YK .
PHYSICAL REVIEW A, 1993, 48 (06) :4780-4783
[23]   COUPLED-REARRANGEMENT-CHANNEL GAUSSIAN-BASIS VARIATIONAL METHOD FOR TRINUCLEON BOUND-STATES [J].
KAMEYAMA, H ;
KAMIMURA, M ;
FUKUSHIMA, Y .
PHYSICAL REVIEW C, 1989, 40 (02) :974-987
[24]   NONADIABATIC COUPLED-REARRANGEMENT-CHANNEL APPROACH TO MUONIC MOLECULES [J].
KAMIMURA, M .
PHYSICAL REVIEW A, 1988, 38 (02) :621-624
[25]   NONADIABATIC VARIATIONAL CALCULATIONS ON DIPOSITRONIUM USING EXPLICITLY CORRELATED GAUSSIAN-BASIS FUNCTIONS [J].
KINGHORN, DB ;
POSHUSTA, RD .
PHYSICAL REVIEW A, 1993, 47 (05) :3671-3681
[26]  
KOZLOWSKI PM, 1991, J CHEM PHYS, V95, P6681, DOI 10.1063/1.461538
[27]   PRECISE NONVARIATIONAL CALCULATION OF THE 2-PHOTON ANNIHILATION RATE OF THE POSITRONIUM NEGATIVE-ION [J].
KRIVEC, R ;
HAFTEL, MI ;
MANDELZWEIG, VB .
PHYSICAL REVIEW A, 1993, 47 (02) :911-917
[28]   STOCHASTIC VARIATIONAL METHOD FOR FEW-BODY SYSTEMS [J].
KUKULIN, VI ;
KRASNOPOLSKY, VM .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1977, 3 (06) :795-811
[29]   VARIATIONAL CALCULATIONS FOR (HE-4)-I - IMPROVED ENERGIES FOR SINGLET AND TRIPLET 3-8-D AND 3-8-F LEVELS [J].
SIMS, JS ;
MARTIN, WC .
PHYSICAL REVIEW A, 1988, 37 (07) :2259-2269
[30]   THE USE OF GAUSSIAN (EXPONENTIAL QUADRATIC) WAVE FUNCTIONS IN MOLECULAR PROBLEMS .1. GENERAL FORMULAE FOR THE EVALUATION OF INTEGRALS [J].
SINGER, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1960, 258 (1294) :412-420