Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor, Tubastatin A

被引:632
作者
Butler, Kyle V. [1 ]
Kalin, Jay [1 ]
Brochier, Camille [2 ]
Vistoli, Guilio [3 ]
Langley, Brett [2 ]
Kozikowski, Alan P. [1 ]
机构
[1] Univ Illinois, Drug Discovery Program, Dept Med Chem & Pharmacognosy, Chicago, IL 60612 USA
[2] Cornell Univ, Coll Med, Burke Med Res Inst, White Plains, NY 10605 USA
[3] Politecn Milan, Dipartimento Sci Farmaceut Pietro Pratesi, I-20133 Milan, Italy
基金
美国国家卫生研究院;
关键词
HISTONE DEACETYLASE INHIBITORS; NERVOUS-SYSTEM; CLASS-I; ACETYLATION; CELLS; SELECTIVITY; DISORDERS; CANCER;
D O I
10.1021/ja102758v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structure-based drug design combined with homology modeling techniques were used to develop potent inhibitors of HDAC6 that display superior selectivity for the HDAC6 isozyme compared to other inhibitors. These inhibitors can be assembled in a few synthetic steps, and thus are readily scaled up for in vivo studies. An optimized compound from this series, designated Tubastatin A, was tested in primary cortical neuron cultures in which it was found to induce elevated levels of acetylated a-tubulin, but not histone, consistent with its HDAC6 selectivity. Tubastatin A also conferred dose-dependent protection in primary cortical neuron cultures against glutathione depletion-induced oxidative stress. Importantly, when given alone at all concentrations tested, this hydroxamate-containing HDAC6-selective compound displayed no neuronal toxicity, thus, forecasting the potential application of this agent and its analogues to neurodegenerative conditions.
引用
收藏
页码:10842 / 10846
页数:5
相关论文
共 29 条
[1]   HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination [J].
Boyault, C. ;
Sadoul, K. ;
Pabion, M. ;
Khochbin, S. .
ONCOGENE, 2007, 26 (37) :5468-5476
[2]   Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions [J].
Choudhary, Chunaram ;
Kumar, Chanchal ;
Gnad, Florian ;
Nielsen, Michael L. ;
Rehman, Michael ;
Walther, Tobias C. ;
Olsen, Jesper V. ;
Mann, Matthias .
SCIENCE, 2009, 325 (5942) :834-840
[3]   Histone deacetylases (HDACs): characterization of the classical HDAC family [J].
De Ruijter, AJM ;
Van Gennip, AH ;
Caron, HN ;
Kemp, S ;
Van Kuilenburg, ABP .
BIOCHEMICAL JOURNAL, 2003, 370 :737-749
[4]   Histone deacetylase inhibitors: Overview and perspectives [J].
Dokmanovic, Milos ;
Clarke, Cathy ;
Marks, Paul A. .
MOLECULAR CANCER RESEARCH, 2007, 5 (10) :981-989
[5]   Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation [J].
Dompierre, Jim P. ;
Godin, Juliette D. ;
Charrin, Benedicte C. ;
Cordelieres, Fabrice P. ;
King, Stephen J. ;
Humbert, Sandrine ;
Saudou, Frederic .
JOURNAL OF NEUROSCIENCE, 2007, 27 (13) :3571-3583
[6]   Clinical development of histone deacetylase inhibitors as anticancer agents [J].
Drummond, DC ;
Noble, CO ;
Kirpotin, DB ;
Guo, ZX ;
Scott, GK ;
Benz, CC .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2005, 45 :495-528
[7]   Role of Class I and Class II histone deacetylases in carcinoma cells using siRNA [J].
Glaser, KB ;
Li, JL ;
Staver, MJ ;
Wei, RQ ;
Albert, DH ;
Davidsen, SK .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 310 (02) :529-536
[8]   Three proteins define a class of human histone deacetylases related to yeast Hda1p [J].
Grozinger, CM ;
Hassig, CA ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :4868-4873
[9]   Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation [J].
Haggarty, SJ ;
Koeller, KM ;
Wong, JC ;
Grozinger, CM ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4389-4394
[10]   HDAC6 is a microtubule-associated deacetylase [J].
Hubbert, C ;
Guardiola, A ;
Shao, R ;
Kawaguchi, Y ;
Ito, A ;
Nixon, A ;
Yoshida, M ;
Wang, XF ;
Yao, TP .
NATURE, 2002, 417 (6887) :455-458