Approximation by multiple refinable functions

被引:30
作者
Jia, RQ
Riemenschneider, SD
Zhou, DX
机构
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1997年 / 49卷 / 05期
关键词
refinement equations; refinable functions; approximation order; accuracy; shift-invariant spaces; subdivision;
D O I
10.4153/CJM-1997-049-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the shift-invariant space, S(Phi), generated by a set Phi = {phi(1),...,phi(r)} of compactly supported distributions on R when the vector of distributions phi := (phi(1),..., phi(r))(T) satisfies a system of refinement equations expressed in matrix form as phi = Sigma(alpha is an element of Z) a(alpha)phi(2 . - alpha) where a is a finitely supported sequence of r x r matrices of complex numbers. Such multiple refinable functions occur naturally in the study of multiple wavelets. The purpose of the present paper is to characterize the accuracy of Phi, the order of the polynomial space contained in S(Phi), strictly in terms of the refinement mask a. The accuracy determines the L-p-approximation order of S(Phi) when the functions in Phi belong to L-p(R) (see Jia [10]). The characterization is achieved in terms of the eigenvalues and eigenvectors of the subdivision operator associated with the mask a. In particular, they extend and improve the results of Heil, Strang and Strela [7], and of Plonka [16]. In addition, a counterexample is given to the statement of Strang and Strela [20] that the eigenvalues of the subdivision operator determine the accuracy. The results do not require the linear independence of the shifts of phi.
引用
收藏
页码:944 / 962
页数:19
相关论文
共 21 条
[1]  
Barros-Neto J., 1973, An introduction to the theory of distributions
[2]  
Cavaretta A.S., 1991, MEMOIRS AM MATH SOC, V93
[3]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079
[4]   APPROXIMATION ORDER FROM BIVARIATE C1-CUBICS - A COUNTEREXAMPLE [J].
DEBOOR, C ;
HOLLIG, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) :649-655
[5]   A SHARP UPPER BOUND ON THE APPROXIMATION ORDER OF SMOOTH BIVARIATE PP FUNCTIONS [J].
DEBOOR, C ;
JIA, RQ .
JOURNAL OF APPROXIMATION THEORY, 1993, 72 (01) :24-33
[6]   Approximation by translates of refinable functions [J].
Heil, C ;
Strang, G ;
Strela, V .
NUMERISCHE MATHEMATIK, 1996, 73 (01) :75-94
[7]  
Heil C., 1996, J FOURIER ANAL APPL, V2, P363
[8]   STABILITY AND LINEAR INDEPENDENCE ASSOCIATED WITH WAVELET DECOMPOSITIONS [J].
JIA, RQ ;
WANG, JZ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) :1115-1124
[9]   Shift-invariant spaces on the real line [J].
Jia, RQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) :785-793
[10]   A CHARACTERIZATION OF THE APPROXIMATION ORDER OF TRANSLATION INVARIANT SPACES OF FUNCTIONS [J].
JIA, RQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (01) :61-70