Multiscale analysis of a cantilever with a contact boundary

被引:18
作者
Chen, Li-Qun [1 ]
机构
[1] Shanghai Univ, Dept Mech, Shanghai 20444, Peoples R China
来源
IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN MULTIBODY SYSTEM CONTACTS | 2007年 / 1卷
关键词
D O I
10.1007/978-1-4020-5981-0_2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper investigates nonlinear vibration in a forced cantilever with a contact boundary. The cantilever is assumed as an Euler-Bernoulli beam, and the contact is specified by the Derjaguin-Muller-Toporov theory. The mathematical model is a linear non-autonomous partial-differential equation with a nonlinear autonomous boundary condition. The method of multiple scales is applied to calculate the steady-state response in principal resonance. The equation of response curves is derived from the solvability condition of eliminating secular terms. Numerical examples are presented to demonstrate the effects of the excitation amplitude, the damping coefficient, and the coefficients related to the contact boundary.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 14 条
[1]   Contact force identification using the subharmonic resonance of a contact-mode atomic force microscopy [J].
Abdel-Rahman, EM ;
Nayfeh, AH .
NANOTECHNOLOGY, 2005, 16 (02) :199-207
[2]  
[Anonymous], 1990, BEHAV NONLINEAR VIBR
[3]   Force-distance curves by atomic force microscopy [J].
Cappella, B ;
Dietler, G .
SURFACE SCIENCE REPORTS, 1999, 34 (1-3) :1-+
[4]   EFFECT OF CONTACT DEFORMATIONS ON ADHESION OF PARTICLES [J].
DERJAGUIN, BV ;
MULLER, VM ;
TOPOROV, YP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1975, 53 (02) :314-326
[5]   Dynamic atomic force microscopy methods [J].
García, R ;
Pérez, R .
SURFACE SCIENCE REPORTS, 2002, 47 (6-8) :197-301
[6]   Nonlinear dynamic perspectives on dynamic force microscopy [J].
Lee, SI ;
Howell, SW ;
Raman, A ;
Reifenberger, R .
ULTRAMICROSCOPY, 2003, 97 (1-4) :185-198
[7]  
Lee SI, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.115409
[8]  
Nayfeh A. H., 2000, WILEY SER NONL SCI
[9]  
Nayfeh A.H., 1981, Introduction to Perturbation Techniques
[10]   Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation [J].
Stark, RW ;
Heckl, WM .
SURFACE SCIENCE, 2000, 457 (1-2) :219-228