Two- and three-dimensional Au nanoparticle/CoTMPyP self-assembled nanotructured materials: Film structure, tunable electrocatalytic activity, and plasmonic properties

被引:65
作者
Cheng, WL
Dong, SJ [1 ]
Wang, EK
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
D O I
10.1021/jp0466237
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets. The annealed SANMs show a strongly enhancing gold surface plasmonic resonance band in comparison with unannealed SANMs. The changes in gold plasmonic properties correlate with annealing-induced structural changes of the SANMs.
引用
收藏
页码:19146 / 19154
页数:9
相关论文
共 100 条
  • [1] Aliev FG, 1999, ADV MATER, V11, P1006, DOI 10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO
  • [2] 2-2
  • [3] Suppression of dewetting in nanoparticle-filled polymer films
    Barnes, KA
    Karim, A
    Douglas, JF
    Nakatani, AI
    Gruell, H
    Amis, EJ
    [J]. MACROMOLECULES, 2000, 33 (11) : 4177 - 4185
  • [4] Electrochemical charge injection into immobilized nanosized gold particle ensembles: Potential modulated transmission and reflectance spectroscopy
    Baum, T
    Bethell, D
    Brust, M
    Schiffrin, DJ
    [J]. LANGMUIR, 1999, 15 (03) : 866 - 871
  • [5] SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM
    BRUST, M
    WALKER, M
    BETHELL, D
    SCHIFFRIN, DJ
    WHYMAN, R
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) : 801 - 802
  • [6] The self-assembly of gold and SCd nanoparticle multilayer structures studied by quartz crystal microgravimetry
    Brust, M
    Etchenique, R
    Calvo, EJ
    Gordillo, GJ
    [J]. CHEMICAL COMMUNICATIONS, 1996, (16) : 1949 - 1950
  • [7] Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO
  • [8] 2-N
  • [9] Electrostatic self-assembly of silica nanoparticle -: Polyelectrolyte multilayers on polystyrene latex particles
    Caruso, F
    Lichtenfeld, H
    Giersig, M
    Möhwald, H
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (33) : 8523 - 8524
  • [10] Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating
    Caruso, F
    Caruso, RA
    Möhwald, H
    [J]. SCIENCE, 1998, 282 (5391) : 1111 - 1114