Crystal structure of Bacillus sp GL1 xanthan lyase, which acts on the side chains of xanthan

被引:46
作者
Hashimoto, W
Nankai, H
Mikami, B
Murata, K [1 ]
机构
[1] Kyoto Univ, Dept Basic & Appl Mol Biotechnol, Div Food & Biol Sci, Grad Sch Agr, Uji, Kyoto 6110011, Japan
[2] Kyoto Univ, Lab Qual Design Exploitat, Div Agron & Hort Sci, Grad Sch Agr, Uji, Kyoto 6110011, Japan
关键词
D O I
10.1074/jbc.M208100200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xanthan lyase, a member of polysaccharide lyase family 8, is a key enzyme for complete depolymerization of a bacterial heteropolysaccharide, xanthan, in Bacillus sp. GL1. The enzyme acts exolytically on the side chains of the polysaccharide. The x-ray crystallographic structure of xanthan lyase was determined by the multiple isomorphous replacement method. The crystal structures of xanthan lyase and its complex with the product (pyruvylated mannose) were refined at 2.3 and 2.4 Angstrom resolution with final R-factors of 17.5 and 16.9%, respectively. The refined structure of the product-free enzyme comprises 752 amino acid residues, 248 water molecules, and one calcium ion. The enzyme consists of N-terminal alpha-helical and C-terminal beta-sheet domains, which constitute incomplete alpha(5)/alpha(5)-barrel and anti-parallel beta-sheet structures, respectively. A deep cleft is located in the N-terminal a-helical domain facing the interface between the two domains. Although the overall structure of the enzyme is basically the same as that of the family 8 lyases for hyaluronate and chondroitin AC, significant differences were observed in the loop structure over the cleft. The crystal structure of the xanthan lyase complexed with pyruvylated mannose indicates that the sugar-binding site is located in the deep cleft, where aromatic and positively charged amino acid residues are involved in the binding. The Arg(313) and Tyr(315) residues in the loop from the N-terminal domain and the Arg(612) residue in the loop from the C-terminal domain directly bind to the pyruvate moiety of the product through the formation of hydrogen bonds, thus determining the substrate specificity of the enzyme.
引用
收藏
页码:7663 / 7673
页数:11
相关论文
共 52 条
[1]   The first structure of pectate lyase belonging to polysaccharide lyase family 3 [J].
Akita, M ;
Suzuki, A ;
Kobayashi, T ;
Ito, S ;
Yamane, T .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2001, 57 :1786-1792
[2]  
ALESHIN A, 1992, J BIOL CHEM, V267, P19291
[3]   The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum [J].
Alzari, PM ;
Souchon, H ;
Dominguez, R .
STRUCTURE, 1996, 4 (03) :265-275
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   Xanthan gum biosynthesis and application:: a biochemical/genetic perspective [J].
Becker, A ;
Katzen, F ;
Pühler, A ;
Ielpi, L .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1998, 50 (02) :145-152
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]   Role of arginine 292 in the catalytic activity of chondroitin AC lyase from Flavobacterium heparinum [J].
Capila, I ;
Wu, Y ;
Rethwisch, DW ;
Matte, A ;
Cygler, M ;
Linhardt, RJ .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2002, 1597 (02) :260-270
[10]   Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era [J].
Davies, GJ ;
Henrissat, B .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2002, 30 :291-297