Nanofiber Assembly by Rotary Jet-Spinning

被引:411
作者
Badrossamay, Mohammad Reza [1 ]
McIlwee, Holly Alice [1 ]
Goss, Josue A. [1 ]
Parker, Kevin Kit [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Wyss Inst Biologically Inspired Engn, Dis Biophys Grp, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Nanofiber fabrication; rotary-jet spinning system; fiber alignment; three-dimensional assembly; cardiac tissue engineering; protein nanofibers; POLYMER-SOLUTIONS;
D O I
10.1021/nl101355x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-voltage electrical fields and low production rate limit electrospinning, the electrical charging of polymer liquids, as a means of nanofiber fabrication. Here, we show a facile method of fabrication of aligned three-dimensional nanofiber structures by utilizing high-speed, rotating polymer solution jets to extrude fibers. Termed rotary jet-spinning, fiber morphology, diameter, and web porosity can be controlled by varying nozzle geometry, rotation speed, and polymer solution properties. We demonstrate the utility of this technique for tissue engineering by building anisotropic arrays of biodegradable polymer fibers and seeding the constructs with neonatal rat ventricular cardiomyocytes. The myocytes used the aligned fibers to orient their contractile cytoskeleton and to self-organize into a beating, multicellular tissue that mimics the laminar, anisotropic architecture of the heart muscle. This technique may prove advantageous for building uniaxially aligned nanofiber structures for polymers which are not amenable to fabrication by electrospinning.
引用
收藏
页码:2257 / 2261
页数:5
相关论文
共 21 条
[11]   Multiple factor interactions in biomimetic mineralization of electrospun scaffolds [J].
Madurantakam, Parthasarathy A. ;
Rodriguez, Isaac A. ;
Cost, Christopher P. ;
Viswanathan, Ramakrishnan ;
Simpson, David G. ;
Beckman, Matthew J. ;
Moon, Peter C. ;
Bowlin, Gary L. .
BIOMATERIALS, 2009, 30 (29) :5456-5464
[12]   Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions [J].
Oliveira, Monica S. N. ;
Yeh, Roger ;
McKinley, Gareth H. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 137 (1-3) :137-148
[13]   Electrospinning of polymeric nanofibers for tissue engineering applications: A review [J].
Pham, Quynh P. ;
Sharma, Upma ;
Mikos, Antonios G. .
TISSUE ENGINEERING, 2006, 12 (05) :1197-1211
[14]  
Rayleigh F. R. S., 1878, P LOND MATH SOC, Vs1-10, P4, DOI DOI 10.1112/PLMS/S1-10.1.4
[15]   Electrospinning of nanofibers from polymer solutions and melts [J].
Reneker, D. H. ;
Yarin, A. L. ;
Zussman, E. ;
Xu, H. .
ADVANCES IN APPLIED MECHANICS, VOL 41, 2007, 41 :43-195
[16]  
Rutledge G. C., 2007, ENCY POLYM SCI TECHN
[17]   Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit [J].
Shenoy, SL ;
Bates, WD ;
Frisch, HL ;
Wnek, GE .
POLYMER, 2005, 46 (10) :3372-3384
[18]   A review on electrospinning design and nanofibre assemblies [J].
Teo, W. E. ;
Ramakrishna, S. .
NANOTECHNOLOGY, 2006, 17 (14) :R89-R106
[19]   Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers [J].
Wang, Chi ;
Chien, Huan-Sheng ;
Yan, Kuo-Wei ;
Hung, Chien-Lin ;
Hung, Kan-Lin ;
Tsai, Shih Jung ;
Jhang, Hao Jhe .
POLYMER, 2009, 50 (25) :6100-6110
[20]   Polymer nanofibers via nozzle-free centrifugal spinning [J].
Weitz, R. T. ;
Harnau, L. ;
Rauschenbach, S. ;
Burghard, M. ;
Kern, K. .
NANO LETTERS, 2008, 8 (04) :1187-1191