Stability theorems for Fourier frames and wavelet Riesz bases

被引:69
作者
Balan, R
机构
[1] Princeton University,Program in Applied and Computational Mathematics
关键词
frames; Riesz basis; nonharmonic series; wavelets;
D O I
10.1007/BF02648880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present two applications of a Stability Theorem of Hilbert frames to nonharmonic Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley-Wiener type constant for nonharmonic series given by Duffin and Schaefer in [6] and used recently in some applications (see (3]). In the case of an orthonormal basis, our estimate reduces to Kadec' optimal 1/4 result. The second application proves that a phenomenon discovered by Daubechies and Tchamitchian [4] for the orthonormal Meyer wavelet basis (stability of the Riesz basis property under small changes of the translation parameter) actually holds for a large class of wavelet Riesz bases.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 12 条
[1]   A PALEY-WIENER THEOREM FOR FRAMES [J].
CHRISTENSEN, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :2199-2201
[2]  
CHRISTENSEN O, IN PRESS MATH NACH
[3]  
CVETKOVIC Z, 1995, M9548 UCBERL
[4]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[5]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[6]  
DUFFIN RJ, 1942, B AM MATH SOC, V48, P850, DOI DOI 10.1090/S0002-9904-1942-07797-4
[7]   ON THE STABILITY OF FRAMES AND RIESZ BASES [J].
FAVIER, SJ ;
ZALIK, RA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) :160-173
[8]  
KADEC MI, 1964, SOV MATH DOKL, V5, P559
[9]  
Kato T., 1976, PERTURBATION THEORY
[10]  
LEVINSON N, 1940, AMS COLL PUBLIC, V26