Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors

被引:392
作者
Wang, Jiayu [1 ]
Zhang, Junxiang [2 ,3 ]
Xiao, Yiqun [4 ]
Xiao, Tong [5 ]
Zhu, Runyu [1 ]
Yan, Cenqi [1 ]
Fu, Youquan [1 ]
Lu, Guanghao [5 ]
Lu, Xinhui [4 ]
Marder, Seth R. [2 ,3 ]
Zhan, Xiaowei [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Key Lab Polymer Chem & Phys,Minist Educ, Beijing 100871, Peoples R China
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA
[4] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[5] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ORGANIC SOLAR-CELLS; SMALL-MOLECULE ACCEPTOR; POLYMER; FULLERENE; EFFICIENT; DESIGN; PHOTOVOLTAICS; NETWORK; VOLTAGE; DONOR;
D O I
10.1021/jacs.8b04027
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We design and synthesize two isomeric fused-ring electron acceptors, FNIC1 and FNIC2, which have the same end-groups and side-chains, but isomeric fused-nine-ring cores. Subtle changes in the two isomers influence their electronic, optical, charge-transport, and morphological properties. As compared with FNIC1, FNIC2 film exhibits a red-shifted absorption peak at 794 nm (752 nm for FNIC1), larger electron affinity of 4.00 eV (3.92 eV for FNIC1), smaller ionization energy of 5.56 eV (5.61 eV for FNIC1), and higher electron mobility of 1.7 X 10(-3) cm(2) V-1 s(-1) (1.2 X 10(-3) cm(2) V-1 s(-1) for FNIC1). The as-cast organic solar cells based on PTB7-Th:FNIC2 blends exhibit a power conversion efficiency (PCE) of 13.0%, which is significantly higher than that of PTB7-Th:FNIC1-based devices (10.3%). Semitransparent devices based on PTB7-Th:FNIC2 blends exhibit PCEs varying from 9.51% to 11.6% at different average visible transmittance (AVT, 20.3- 13.6%), significantly higher than those of PTB7-Th:FNIC1-based devices (7.58-9.14% with AVT of 20.2-14.7%).
引用
收藏
页码:9140 / 9147
页数:8
相关论文
共 72 条
[71]   New polymer acceptors for organic solar cells: the effect of regio-regularity and device configuration [J].
Zhou, Yan ;
Yan, Qifan ;
Zheng, Yu-Qing ;
Wang, Jie-Yu ;
Zhao, Dahui ;
Pei, Jian .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (22) :6609-6613
[72]   Naphthodithiophene-Based Nonfullerene Acceptor for High-Performance Organic Photovoltaics: Effect of Extended Conjugation [J].
Zhu, Jingshuai ;
Ke, Zhifan ;
Zhang, Qianqian ;
Wang, Jiayu ;
Dai, Shuixing ;
Wu, Yang ;
Xu, Ye ;
Lin, Yuze ;
Ma, Wei ;
You, Wei ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2018, 30 (02)