Antibacterial polypropylene via surface-initiated atom transfer radical polymerization

被引:269
作者
Huang, Jinyu
Murata, Hironobu
Koepsel, Richard R.
Russell, Alan J.
Matyjaszewski, Krzysztof
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[2] McGowan Inst Regenerat Med, Dept Chem & Petr Engn, Pittsburgh, PA 15219 USA
[3] McGowan Inst Regenerat Med, Dept Bioengn, Pittsburgh, PA 15219 USA
[4] McGowan Inst Regenerat Med, Dept Surg, Pittsburgh, PA 15219 USA
关键词
D O I
10.1021/bm061236j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polypropylene (PP) coated by a non-leachable biocide was prepared by chemically attaching poly(quaternary ammonium) (PQA) to the surface of PP. The well-defined poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), a precursor of PQA, was grown from the surface of PP via atom transfer radical polymerization (ATRP). The tertiary ammine groups in PDMAEMA were consequently converted to QA in the presence of ethyl bromide. Successful surface modification was confirmed by ATR-FTIR, contact angle measurement, and an antibacterial activity test against Escherichia coli (E. coli). The biocidal activity of the resultant surfaces depends on the amount of the grafted polymers (the number of available quaternary ammonium units). With the same grafting density, the surface grafted with relatively high MW polymers (M-n > 10,000 g/mol) showed almost 100% killing efficiency (killing all of the input E. coli (2.9 x 10(5)) in the shaking test), whereas a low biocidal activity (85%) was observed for the surface grafted with shorter PQA chains (M-n = 1,500 g/mol).
引用
收藏
页码:1396 / 1399
页数:4
相关论文
共 33 条
[1]   Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces [J].
Cen, L ;
Neoh, KG ;
Kang, ET .
LANGMUIR, 2003, 19 (24) :10295-10303
[2]   Surface grafting polymerization of N-vinyl-2-pyrrolidone onto a poly(ethylene terephthalate) nonwoven by plasma pretreatment and its antibacterial activities [J].
Chen, KS ;
Ku, YA ;
Lin, HR ;
Yan, TR ;
Sheu, DC ;
Chen, TM .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (01) :803-809
[3]   Comparative actions of a low pressure oxygen plasma and an atmospheric pressure glow discharge on the surface modification of polypropylene [J].
Choi, HS ;
Rybkin, VV ;
Titov, VA ;
Shikova, TG ;
Ageeva, TA .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (14-15) :4479-4488
[4]   Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization [J].
Ejaz, M ;
Tsujii, Y ;
Fukuda, T .
POLYMER, 2001, 42 (16) :6811-6815
[5]   Novel metal-polyurethane complexes with enhanced antimicrobial activity [J].
Francolini, I ;
Ruggeri, V ;
Martinelli, A ;
D'Ilario, L ;
Piozzi, A .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (04) :233-237
[6]   OZONE-INDUCED GRAFT-POLYMERIZATION ONTO POLYMER SURFACE [J].
FUJIMOTO, K ;
TAKEBAYASHI, Y ;
INOUE, H ;
IKADA, Y .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1993, 31 (04) :1035-1043
[7]  
GOLUBOVICH V N, 1974, Mikrobiologiya, V43, P1115
[8]   Polymer surface chemistry for biologically active materials [J].
Holländer, A ;
Thome, J ;
Keusgen, M ;
Degener, I ;
Klein, W .
APPLIED SURFACE SCIENCE, 2004, 235 (1-2) :145-150
[9]   Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications [J].
Hu, FX ;
Neoh, KG ;
Cen, L ;
Kang, ET .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 89 (04) :474-484
[10]   Controlled synthesis of polymer brushes by "Living" free radical polymerization techniques [J].
Husseman, M ;
Malmström, EE ;
McNamara, M ;
Mate, M ;
Mecerreyes, D ;
Benoit, DG ;
Hedrick, JL ;
Mansky, P ;
Huang, E ;
Russell, TP ;
Hawker, CJ .
MACROMOLECULES, 1999, 32 (05) :1424-1431