Generation of ultraviolet entangled photons in a semiconductor

被引:153
作者
Edamatsu, K [1 ]
Oohata, G
Shimizu, R
Itoh, T
机构
[1] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo, Japan
[3] JST, ERATO, Semicond Spintron Project, Tokyo, Japan
[4] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/nature02838
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entanglement is one of the key features of quantum information and communications technology. The method that has been used most frequently to generate highly entangled pairs of photons(1,2) is parametric down-conversion. Short-wavelength entangled photons are desirable for generating further entanglement between three or four photons, but it is difficult to use parametric down-conversion to generate suitably energetic entangled photon pairs. One method that is expected to be applicable for the generation of such photons(3) is resonant hyper-parametric scattering (RHPS): a pair of entangled photons is generated in a semiconductor via an electronically resonant third-order non-linear optical process. Semiconductor-based sources of entangled photons would also be advantageous for practical quantum technologies, but attempts to generate entangled photons in semiconductors have not yet been successful(4,5). Here we report experimental evidence for the generation of ultraviolet entangled photon pairs by means of biexciton resonant RHPS in a single crystal of the semiconductor CuCl. We anticipate that our results will open the way to the generation of entangled photons by current injection, analogous to current-driven single photon sources(6,7).
引用
收藏
页码:167 / 170
页数:4
相关论文
共 20 条
[1]   Regulated and entangled photons from a single quantum dot [J].
Benson, O ;
Santori, C ;
Pelton, M ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2513-2516
[2]   Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit [J].
Boto, AN ;
Kok, P ;
Abrams, DS ;
Braunstein, SL ;
Williams, CP ;
Dowling, JP .
PHYSICAL REVIEW LETTERS, 2000, 85 (13) :2733-2736
[3]   THE DISPERSION OF EXCITONS, POLARITONS AND BIEXCITONS IN DIRECT-GAP SEMICONDUCTORS [J].
HONERLAGE, B ;
LEVY, R ;
GRUN, JB ;
KLINGSHIRN, C ;
BOHNERT, K .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 124 (03) :161-253
[4]   EXCITONIC POLARITON-POLARITON RESONANCE SCATTERING VIA EXCITONIC MOLECULES IN CUC1 [J].
ITOH, T ;
SUZUKI, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 45 (06) :1939-1948
[5]   Measurement of qubits [J].
James, DFV ;
Kwiat, PG ;
Munro, WJ ;
White, AG .
PHYSICAL REVIEW A, 2001, 64 (05) :15-523121
[6]   POLARIZATION ROTATION EFFECTS ASSOCIATED WITH THE 2-PHOTON TRANSITION OF GAMMA-1-EXCITONIC MOLECULES IN CUCL [J].
KUWATA, M ;
MITA, T ;
NAGASAWA, N .
OPTICS COMMUNICATIONS, 1982, 40 (03) :208-211
[7]   Ultrabright source of polarization-entangled photons [J].
Kwiat, PG ;
Waks, E ;
White, AG ;
Appelbaum, I ;
Eberhard, PH .
PHYSICAL REVIEW A, 1999, 60 (02) :R773-R776
[8]   NEW HIGH-INTENSITY SOURCE OF POLARIZATION-ENTANGLED PHOTON PAIRS [J].
KWIAT, PG ;
MATTLE, K ;
WEINFURTER, H ;
ZEILINGER, A ;
SERGIENKO, AV ;
SHIH, YH .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4337-4341
[9]   Super-resolving phase measurements with a multiphoton entangled state [J].
Mitchell, MW ;
Lundeen, JS ;
Steinberg, AM .
NATURE, 2004, 429 (6988) :161-164
[10]  
Munro WJ, 2001, J MOD OPTIC, V48, P1239, DOI 10.1080/095003400110034532