The new wave in shock waves

被引:42
作者
Dlott, DD [1 ]
Hambir, S [1 ]
Franken, J [1 ]
机构
[1] Univ Illinois, Sch Chem Sci, Urbana, IL 61801 USA
关键词
D O I
10.1021/jp973404v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser-driven shock waves (0-5 GPa) can be generated at high repetition rates (100/s) using a moderate-energy tabletop picosecond laser system and a multilayered microfabricated shock target array. High spatial resolution is needed to obtain high temporal resolution of the effects of a steeply rising shock front on molecular materials. The needed spatial resolution is obtained using a sandwich arrangement with a thin layer of sample material termed an "optical nanogauge". Experiments with an anthracene nanogauge show that ultrafast vibrational spectroscopy can be used to determine the shock temperature, pressure, velocity, and shock front rise time. Shock pulses can be generated with rise times <25 ps, which generate irreversible shock compression, and with rise times of a few hundred picoseconds, which generate reversible compression. These pulses, which have a duration of a few nanoseconds, are termed "nanoshock" pulses. Nanoshock pulses produce large-amplitude mechanical perturbations and can initiate and turn off thermochemical reactions, produce highly excited vibrational populations, and heat and cool condensed matter systems at tremendous rates. These applications are illustrated briefly in nanoshock experiments on an energetic material and a heme protein. Using high repetition rate nanoshocks to study large-amplitude molecular dynamics in molecular materials important in chemistry and biology is the new wave in shock waves.
引用
收藏
页码:2121 / 2130
页数:10
相关论文
共 76 条
[61]   SUBNANOSECOND MEASUREMENTS OF DETONATION FRONTS IN SOLID HIGH EXPLOSIVES [J].
SHEFFIELD, SA ;
BLOOMQUIST, DD ;
TARVER, CM .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (08) :3831-3844
[62]  
SHRAGER RI, 1982, ANAL CHEM, V54, P1152
[63]   Theoretical and experimental studies of the structure and vibrational spectra of NTO [J].
Sorescu, DC ;
Sutton, TRL ;
Thompson, DL ;
Beardall, D ;
Wight, CA .
JOURNAL OF MOLECULAR STRUCTURE, 1996, 384 (2-3) :87-99
[64]   SHOCK VISCOSITY AND THE PREDICTION OF SHOCK-WAVE RISE TIMES [J].
SWEGLE, JW ;
GRADY, DE .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (02) :692-701
[65]   Coherent Raman spectroscopy of nanoshocks [J].
Tas, G ;
Hambir, SA ;
Franken, J ;
Hare, DE ;
Dlott, DD .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :1080-1087
[66]   Ultrafast Raman spectroscopy of shock fronts in molecular solids [J].
Tas, G ;
Franken, J ;
Hambir, SA ;
Hare, DE ;
Dlott, DD .
PHYSICAL REVIEW LETTERS, 1997, 78 (24) :4585-4588
[67]   CHEMICAL-REACTION INITIATION AND HOT-SPOT FORMATION IN SHOCKED ENERGETIC MOLECULAR MATERIALS [J].
TOKMAKOFF, A ;
FAYER, MD ;
DLOTT, DD .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (09) :1901-1913
[68]   SINGLE-PULSE RAMAN-SCATTERING STUDY OF TRIAMINOTRINITROBENZENE UNDER SHOCK COMPRESSION [J].
TROTT, WM ;
RENLUND, AM .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (21) :5921-5925
[69]   COMPRESSIBILITY OF 18 MOLECULAR ORGANIC SOLIDS TO 45 KBAR [J].
VAIDYA, SN ;
KENNEDY, GC .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (03) :987-&
[70]   SHOCK WAVE COMPRESSION OF 3 POLYNUCLEAR AROMATIC COMPOUNDS [J].
WARNES, RH .
JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (03) :1088-&