Generalized Henon maps: the cubic diffeomorphisms of the plane

被引:50
作者
Dullin, HR
Meiss, JD [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
来源
PHYSICA D | 2000年 / 143卷 / 1-4期
基金
美国国家科学基金会;
关键词
polynomial diffeomorphisms; Jacobian conjecture; bifurcations; anti-integrable limit;
D O I
10.1016/S0167-2789(00)00105-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general a polynomial diffeomorphism of the plane can be transformed into a composition of generalized Henon maps. These maps exhibit some of the familiar properties of the quadratic Henon map, including a bounded set of bounded orbits and an anti-integrable limit. We investigate in particular the cubic, area-preserving case, which reduces to two, two-parameter families of maps. The bifurcations of low period orbits of these maps are discussed in detail. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:262 / 289
页数:28
相关论文
共 26 条
[1]  
Arnol'd V. I., 1988, ENCY MATH SCI, V3
[2]   ANTIINTEGRABILITY IN DYNAMICAL AND VARIATIONAL-PROBLEMS [J].
AUBRY, S .
PHYSICA D, 1995, 86 (1-2) :284-296
[3]   Reversing symmetry group of Gl(2,Z) and PGl(2,Z) matrices with connections to cat maps and trace maps [J].
Baake, M ;
Roberts, JAG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05) :1549-1573
[4]  
BARGE M, 1993, FROM TOPOLOGY COMPUT, P186
[5]   THE JACOBIAN CONJECTURE - REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE [J].
BASS, H ;
CONNELL, EH ;
WRIGHT, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :287-330
[6]   Stability of equilibria and fixed points of conservative systems [J].
Cabral, HE ;
Meyer, KR .
NONLINEARITY, 1999, 12 (05) :1351-1362
[7]  
Dragt A.J., 1996, INTEGRATION ALGORITH, V10, P59
[8]   Generic twistless bifurcations [J].
Dullin, HR ;
Meiss, JD ;
Sterling, D .
NONLINEARITY, 2000, 13 (01) :203-224
[9]   GANZE CREMONA-TRANSFORMATIONEN VON PRIMZAHLGRAD IN DER EBENE [J].
ENGEL, W .
MATHEMATISCHE ANNALEN, 1958, 136 (04) :319-325
[10]  
FOREST E, 1998, BEAM DYNAMICS NEW AT