Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat

被引:212
作者
Senba, E [1 ]
Ueyama, T [1 ]
机构
[1] Wakayama Med Coll, Dept Anat & Neurobiol, Wakayama 640, Japan
关键词
immediate early genes; stress; c-fos; HPA axis; amygdala; repeated stress; glucocorticoid; heart; stomach;
D O I
10.1016/S0168-0102(97)00095-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Stress causes rapid and transient expression of immediate early genes (IEGs) in the brain, and the monitoring of IEGs has enabled the visualization of the neurocircuitry of stress. Previous studies have postulated that stressors can be divided into two categories; processive and systemic. The neural circuits of brain activation differ between the two kinds of stressors. For example, processive stressors, such as immobilization (IMO), induce c-fos mRNA first in the cortical and limbic areas and then in the paraventricular hypothalamic nucleus (PVH), while c-fos expression in the PVH precedes that in other areas in animals subjected to systemic stressors. We further show that prior exposure to IMO stress for 6 days, or implantation of corticosterone pellets suppresses the induction of c-fos, fos B, jun B and NGFI-B, but not that of NGFI-A in the rat PVH. Plasma glucocorticoid may be an important factor regulating stress-induced IEG expression. It is well known that AP-I and glucocorticoid receptors (GR) interact and suppress each other. Thus, decreased AP-1 levels in chronically stressed animals may help enhance the negative feedback effects of GR and prevent hypersecretion of glucocorticoid, which is implicated in the pathogenesis of stress-related diseases. IMO stress induces rapid expression of c-fos, c-jun and NGFI-A mRNAs in the heart and stomach. These were observed in the ventricular myocardium and coronary arteries, and in the epithelium, smooth muscles and arteries of the stomach after 30 min of IMO. IEG expression in the peripheral organs may provide a molecular basis for stress-induced psychosomatic disorders. (C) 1997 Elsevier Science Ireland Ltd.
引用
收藏
页码:183 / 207
页数:25
相关论文
共 147 条
[1]   CHRONIC STRESS INCREASES SEROTONIN AND NORADRENALINE IN RAT-BRAIN AND SENSITIZES THEIR RESPONSES TO A FURTHER ACUTE STRESS [J].
ADELL, A ;
GARCIAMARQUEZ, C ;
ARMARIO, A ;
GELPI, E .
JOURNAL OF NEUROCHEMISTRY, 1988, 50 (06) :1678-1681
[2]   FEEDBACK SENSITIVITY OF THE RAT HYPOTHALAMO-PITUITARY-ADRENAL AXIS AND ITS CAPACITY TO ADJUST TO EXOGENOUS CORTICOSTERONE [J].
AKANA, SF ;
SCRIBNER, KA ;
BRADBURY, MJ ;
STRACK, AM ;
WALKER, CD ;
DALLMAN, MF .
ENDOCRINOLOGY, 1992, 131 (02) :585-594
[3]   RESPONSE OF ANTERIOR-PITUITARY HORMONES TO CHRONIC STRESS - THE SPECIFICITY OF ADAPTATION [J].
ARMARIO, A ;
LOPEZCALDERON, A ;
JOLIN, T ;
BALASCH, J .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 1986, 10 (03) :245-250
[4]   EXPRESSION OF C-FOS IN REGIONS OF THE BASAL LIMBIC FOREBRAIN FOLLOWING INTRACEREBROVENTRICULAR CORTICOTROPIN-RELEASING FACTOR IN UNSTRESSED OR STRESSED MALE-RATS [J].
ARNOLD, FJL ;
BUENO, MD ;
SHIERS, H ;
HANCOCK, DC ;
EVAN, GI ;
HERBERT, J .
NEUROSCIENCE, 1992, 51 (02) :377-390
[5]   Expression of ionotropic glutamate receptor subunit mRNAs by paraventricular corticotropin-releasing factor (CRF) neurons [J].
Aubry, JM ;
Bartanusz, V ;
Pagliusi, S ;
Schulz, P ;
Kiss, JZ .
NEUROSCIENCE LETTERS, 1996, 205 (02) :95-98
[6]   STRESS-INDUCED CHANGES IN MESSENGER-RNA LEVELS OF N-METHYL-D-ASPARTATE AND AMPA RECEPTOR SUBUNITS IN SELECTED REGIONS OF THE RAT HIPPOCAMPUS AND HYPOTHALAMUS [J].
BARTANUSZ, V ;
AUBRY, JM ;
PAGLIUSI, S ;
JEZOVA, D ;
BAFFI, J ;
KISS, JZ .
NEUROSCIENCE, 1995, 66 (02) :247-252
[7]   PARTICIPATION OF THE CENTRAL AMYGDALOID NUCLEUS IN THE RESPONSE OF ADRENOCORTICOTROPIN SECRETION TO IMMOBILIZATION STRESS - OPPOSING ROLES OF THE NORADRENERGIC AND DOPAMINERGIC SYSTEMS [J].
BEAULIEU, S ;
DIPAOLO, T ;
COTE, J ;
BARDEN, N .
NEUROENDOCRINOLOGY, 1987, 45 (01) :37-46
[8]  
BISHOPRIC NH, 1991, CIRCULATION S2, V84, P87
[9]   WATER-AVOIDANCE STRESS-INDUCED C-FOS EXPRESSION IN THE RAT-BRAIN AND STIMULATION OF FECAL OUTPUT - ROLE OF CORTICOTROPIN-RELEASING FACTOR [J].
BONAZ, B ;
TACHE, Y .
BRAIN RESEARCH, 1994, 641 (01) :21-28
[10]   MOLECULAR MECHANISMS OF STRESS-INDUCED PROENKEPHALIN GENE-REGULATION - CREB INTERACTS WITH THE PROENKEPHALIN GENE IN THE MOUSE HYPOTHALAMUS AND IS PHOSPHORYLATED IN RESPONSE TO HYPEROSMOLAR STRESS [J].
BORSOOK, D ;
KONRADI, C ;
FALKOWSKI, O ;
COMB, M ;
HYMAN, SE .
MOLECULAR ENDOCRINOLOGY, 1994, 8 (02) :240-248