Large scale MP2 calculations with fragment molecular orbital scheme

被引:181
作者
Mochizuki, Y
Koikegami, S
Nakano, T
Amari, S
Kitaura, K
机构
[1] Univ Tokyo, Ctr Collaborat Res, Inst Ind Sci, Meguro Ku, Tokyo 1538904, Japan
[2] Natl Inst Hlth Sci, Div Safety Informat Drug Food & Chem, Setagaya Ku, Tokyo 1588501, Japan
[3] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
10.1016/j.cplett.2004.08.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have recently developed a parallelized integral-direct algorithm for the second-order Moller-Plesset perturbation theory (MP2) and implemented it into the ABINIT-MP program of the fragment molecular orbital (FMO) scheme. A flexible parallelization is possible by combining the fragment indices (upper level) and the two-electron integral indices (lower level) on distributed computational resources, leading to an enhancement of in-core processings. In this Letter, we carry out a series of benchmark FMO-MP2 calculations of realistic proteins consisting of the tens of thousands of basis functions. The performance is shown to be high, indicating that the ABINIT-MP program is easily applicable to the realistic systems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 31 条
[11]   A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) [J].
Fedorov, DG ;
Olson, RM ;
Kitaura, K ;
Gordon, MS ;
Koseki, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (06) :872-880
[12]   The Distributed Data Interface in GAMESS [J].
Fletcher, GD ;
Schmidt, MW ;
Bode, BM ;
Gordon, MS .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 128 (1-2) :190-200
[13]  
Foresman J.B., 1996, EXPLORING CHEM ELECT
[14]  
Helgaker T., 2002, Molecular Electronic-Structure Theory
[15]  
Hu C.-H., 1998, ENCY COMPUTATIONAL C
[16]   Definition of molecular orbitals in fragment molecular orbital method [J].
Inadomi, Y ;
Nakano, T ;
Kitaura, K ;
Nagashima, U .
CHEMICAL PHYSICS LETTERS, 2002, 364 (1-2) :139-143
[17]  
Jeffrey GA., 1997, An Introduction to Hydrogen Bonding
[18]   2ND-ORDER MOLLER-PLESSET PERTURBATION-THEORY AS A CONFIGURATION AND ORBITAL GENERATOR IN MULTICONFIGURATION SELF-CONSISTENT FIELD CALCULATIONS [J].
JENSEN, HJA ;
JORGENSEN, P ;
AGREN, H ;
OLSEN, J .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (06) :3834-3839
[19]   Pair interaction molecular orbital method: an approximate computational method for molecular interactions [J].
Kitaura, K ;
Sawai, T ;
Asada, T ;
Nakano, T ;
Uebayasi, M .
CHEMICAL PHYSICS LETTERS, 1999, 312 (2-4) :319-324
[20]   Fragment molecular orbital method: analytical energy gradients [J].
Kitaura, K ;
Sugiki, SI ;
Nakano, T ;
Komeiji, Y ;
Uebayasi, M .
CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) :163-170