Magnetic geometry and the confinement of electrically conducting plasmas

被引:39
作者
Faddeev, L
Niemi, AJ
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, Russia
[2] Uppsala Univ, Dept Theoret Phys, S-75108 Uppsala, Sweden
[3] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
关键词
D O I
10.1103/PhysRevLett.85.3416
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an effective field theory approach to inspect the electromagnetic interactions in an electrically neutral plasma, with an equal number of negative and positive charge carriers. We argue that the static equilibrium configurations within the plasma are topologically stable solitons that describe knotted and linked flux tubes of helical magnetic fields.
引用
收藏
页码:3416 / 3419
页数:4
相关论文
共 12 条
[1]   Solitons, links and knots [J].
Battye, RA ;
Sutcliffe, PM .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1992) :4305-4331
[2]   Knots as stable soliton solutions in a three-dimensional classical field theory [J].
Battye, RA ;
Sutcliffe, PM .
PHYSICAL REVIEW LETTERS, 1998, 81 (22) :4798-4801
[3]  
Biskamp D, 1993, Nonlinear Magnetohydrodynamics
[4]   Stable knot-like structures in classical field theory [J].
Faddeev, L ;
Niemi, AJ .
NATURE, 1997, 387 (6628) :58-61
[5]  
Faddeev L., 1979, EINSTEIN SEVERAL CON, V1
[6]  
Faddeev L. D., 1975, PRINT75QS70 IAS
[7]  
Freidberg J. P., 1987, IDEAL MAGNETOHYDRODY
[8]   Static solitons with nonzero Hopf number [J].
Gladikowski, J ;
Hellmund, M .
PHYSICAL REVIEW D, 1997, 56 (08) :5194-5199
[9]   Faddeev-Hopf knots: dynamics of linked un-knots [J].
Hietarinta, J ;
Salo, P .
PHYSICS LETTERS B, 1999, 451 (1-2) :60-67
[10]   Aspects of duality and confining strings [J].
Miettinen, M ;
Niemi, AJ ;
Stroganov, Y .
PHYSICS LETTERS B, 2000, 474 (3-4) :303-308