Robust Nonlinear Model Predictive Control of a Run-of-Mine Ore Milling Circuit

被引:49
作者
Coetzee, Loutjie C. [1 ]
Craig, Ian K. [1 ]
Kerrigan, Eric C. [2 ,3 ]
机构
[1] Univ Pretoria, Dept Elect Engn & Comp Engn, ZA-0002 Pretoria, South Africa
[2] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
新加坡国家研究基金会;
关键词
Grinding mill; milling circuit; process control; robust nonlinear model predictive control (RNMPC); run-of-mine (ROM) ore; GRINDING CIRCUIT; OPTIMIZATION; STABILITY; SCHEME;
D O I
10.1109/TCST.2009.2014641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief investigates the feasibility of applying a robust nonlinear model predictive controller to a run-of-mine ore milling circuit, and the conditions under which such a controller might be worthwhile implementing. The run-of-mine ore milling circuit model used consists of nonlinear modules for the individual components of the milling circuit, allowing for arbitrary milling circuit configurations to be modeled. The model is cast into a robust nonlinear model predictive control framework, and a practically motivated simulation of the mill model being controlled by an robust nonlinear model predictive control (RNMPC) controller is presented. Issues related to implementing such a controller are investigated.
引用
收藏
页码:222 / 229
页数:8
相关论文
共 17 条
[1]  
COETZEE LC, 2008, 17 IFAC WORLD C SEOU
[2]   SPECIFICATION FRAMEWORK FOR ROBUST-CONTROL OF A RUN-OF-MINE ORE MILLING CIRCUIT [J].
CRAIG, IK ;
MACLEOD, IM .
CONTROL ENGINEERING PRACTICE, 1995, 3 (05) :621-630
[3]   An approximation technique for robust nonlinear optimization [J].
Diehl, M ;
Bock, HG ;
Kostina, E .
MATHEMATICAL PROGRAMMING, 2006, 107 (1-2) :213-230
[4]   A real-time iteration scheme for nonlinear optimization in optimal feedback control [J].
Diehl, M ;
Bock, HG ;
Schlöder, JP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (05) :1714-1736
[5]  
HULBERT DG, 1989, 6 IFAC S AUT MIN MIN
[6]   On input-to-state stability of min-max nonlinear model predictive control [J].
Lazar, M. ;
De la Pena, D. Munoz ;
Heemels, W. P. M. H. ;
Alamo, T. .
SYSTEMS & CONTROL LETTERS, 2008, 57 (01) :39-48
[7]   The common optimization INterface for operations research: Promoting open-source software in the operations research community [J].
Lougee-Heimer, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2003, 47 (01) :57-66
[8]   Worst-case analysis of finite-time control policies [J].
Ma, DL ;
Braatz, RD .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (05) :766-774
[9]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814
[10]   Robust model predictive control of nonlinear process systems: Handling rate constraints [J].
Mhaskar, Prashant ;
Kennedy, Andrew B. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (02) :366-375