Sulfidation of NiMn-Layered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance

被引:245
作者
Chen, Jingwei [1 ]
Wang, Xu [1 ]
Wang, Jiangxin [1 ]
Lee, Pooi See [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
layered double hydroxides; sulfidation; supercapacitors; electrodes; DOUBLE HYDROXIDE NANOSHEETS; NICO2S4 NANOTUBE ARRAYS; GRAPHENE OXIDE; SOLVOTHERMAL SYNTHESIS; HYDROTHERMAL SYNTHESIS; NANOWIRE; FACILE; PAPER; NIS; ARCHITECTURE;
D O I
10.1002/aenm.201501745
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supercapacitors can deliver high-power density and long cycle stability, but the limited energy density due to poor electronic and ionic conductivity of the supercapacitor electrode has been a bottleneck in many applications. A strategy to prepare microflower-like NiMn-layered double hydroxides (LDH) with sulfidation is delineated to reduce the charge transfer resistance of supercapacitor electrode and realize faster reversible redox reactions with notably enhanced specific capacitance. The incorporation of graphite oxide (GO) in NiMn LDH during sulfidation leads to simultaneous reduction of GO with enhanced conductivity, lessened defects, and doping of S into the graphitic structure. Cycling stability of the sulfidized composite electrode is enhanced due to the alleviation of phase transformation during electrochemical cycling test. As a result, this sulfidation product of LDH/GO (or LDHGOS) can reach a high-specific capacitance of 2246.63 F g(-1) at a current density of 1 A g(-1), and a capacitance of 1670.83 F g(-1) is retained at a high-current density of 10 A g(-1), exhibiting an outstanding capacitance and rate performance. The cycling retention of the LDHGOS electrode is also extended to approximate to 67% after 1500 cycles compared to only approximate to 44% of the pristine NiMn LDH.
引用
收藏
页数:8
相关论文
共 49 条
[1]   A high density of vertically-oriented graphenes for use in electric double layer capacitors [J].
Cai, Minzhen ;
Outlaw, Ronald A. ;
Butler, Sue M. ;
Miller, John R. .
CARBON, 2012, 50 (15) :5481-5488
[2]   Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor [J].
Cai, Xiaoqing ;
Shen, Xiaoping ;
Ma, Lianbo ;
Ji, Zhenyuan ;
Xu, Chen ;
Yuan, Aihua .
CHEMICAL ENGINEERING JOURNAL, 2015, 268 :251-259
[3]   In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhang, Li ;
Xia, Dandan ;
Zhao, Yuandong ;
Guo, Danqing ;
Qi, Tong ;
Wan, Houzhao .
JOURNAL OF POWER SOURCES, 2014, 254 :249-257
[4]   Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhang, Li ;
Wan, Houzhao ;
Qi, Tong ;
Xia, Dandan .
NANOSCALE, 2013, 5 (19) :8879-8883
[5]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[6]   Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors [J].
Choi, Bong Gill ;
Hong, Jinkee ;
Hong, Won Hi ;
Hammond, Paula T. ;
Park, HoSeok .
ACS NANO, 2011, 5 (09) :7205-7213
[7]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[8]   Flexible and Highly Scalable V2O5-rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices [J].
Foo, Ce Yao ;
Sumboja, Afriyanti ;
Tan, Daniel Jia Hong ;
Wang, Jiangxin ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2014, 4 (12)
[9]  
Gu F., 2014, SMALL
[10]   Optical phonons in millerite (NiS) from single-crystal polarized Raman spectroscopy [J].
Guillaume, Franicois ;
Huang, Shanshan ;
Harris, Kenneth D. M. ;
Couzi, Michel ;
Talaga, David .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) :1419-1422