Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea:: Analysis of expressed sequence tags

被引:65
作者
Ebbole, DJ [1 ]
Jin, Y
Thon, M
Pan, HQ
Bhattarai, E
Thomas, T
Dean, R
机构
[1] Texas A&M Univ, Dept Plant Pathol & Microbiol, Program Biol Filamentous Fungi, College Stn, TX 77843 USA
[2] N Carolina State Univ, Fungal Genom Lab, Ctr Integrated Fungal Res, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
关键词
plant pathogen;
D O I
10.1094/MPMI.2004.17.12.1337
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over 28,000 expressed sequence tags (ESTs) were produced from cDNA libraries representing a variety of growth conditions and cell types. Several Magnaporthe grisea strains were used to produce the libraries, including a nonpathogenic strain bearing a mutation in the PMK1 mitogen-activated protein kinase. Approximately 23,000 of the ESTs could be clustered into 3,050 contigs, leaving 5,127 singleton sequences. The estimate of 8,177 unique sequences indicates that over half of the genes of the fungus are represented in the ESTs. Analysis of EST frequency reveals growth and cell type-specific patterns of gene expression. This analysis establishes criteria for identification of fungal genes involved in pathogenesis. A large fraction of the genes represented by ESTs have no known function or described homologs. Manual annotation of the most abundant cDNAs with no known homologs allowed us to identify a family of metallothionein proteins present in M. grisea, Neurospora crassa, and Fusarium graminearum. In addition, multiply represented ESTs permitted the identification of alternatively spliced mRNA species. Alternative splicing was rare, and in most cases, the alternate mRNA forms were unspliced, although alternative 5' splice sites were also observed.
引用
收藏
页码:1337 / 1347
页数:11
相关论文
共 38 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition [J].
Beckerman, JL ;
Ebbole, DJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1996, 9 (06) :450-456
[3]  
Berbee ML, 2001, MYCOTA, V7, P229
[4]   d2_cluster: A validated method for clustering EST and full-length cDNA sequences [J].
Burke, J ;
Davison, D ;
Hide, W .
GENOME RESEARCH, 1999, 9 (11) :1135-1142
[5]   SELECTION FOR MATING COMPETENCE IN MAGNAPORTHE-GRISEA PATHOGENIC TO RICE [J].
CHAO, CCT ;
ELLINGBOE, AH .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1991, 69 (10) :2130-2134
[6]  
Davis R. H., 1970, METHODS ENZYMOLOGY A, V17, P79, DOI DOI 10.1016/0076-6879(71)17168-6
[7]   Signal pathways and appressorium morphogenesis [J].
Dean, RA .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1997, 35 :211-234
[8]   Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers [J].
Dioh, W ;
Tharreau, D ;
Notteghem, JL ;
Orbach, M ;
Lebrun, MH .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (02) :217-227
[9]   A STATISTICAL-ANALYSIS OF SEQUENCE FEATURES WITHIN GENES FROM NEUROSPORA-CRASSA [J].
EDELMANN, SE ;
STABEN, C .
EXPERIMENTAL MYCOLOGY, 1994, 18 (01) :70-81
[10]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868