Tunable Mechanics of Peptide Nanofiber Gels

被引:185
作者
Greenfield, Megan A. [2 ]
Hoffman, Jessica R. [1 ]
de la Cruz, Monica Olvera [1 ,2 ,3 ]
Stupp, Samuel I. [1 ,3 ,4 ,5 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[5] Northwestern Univ, Inst BioNanotechnol Med, Chicago, IL 60611 USA
关键词
SELF-ASSEMBLING BIOMATERIALS; AMPHIPHILE NANOFIBERS; VISCOELASTIC PROPERTIES; ELASTICITY; GROWTH; STIFFNESS; RHEOLOGY; MATRICES; BEHAVIOR; BINDING;
D O I
10.1021/la9030969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanical properties of self-assembled fibrillar networks are influenced by the specific intermolecular interactions that modulate fiber entanglements. We investigate how changing these interactions influences the mechanics of self-assembled nanofiber gels composed of peptide amphiphile (PA) molecules. PAs developed in our laboratory self assemble into gels of nanofibers after neutralization or salt-mediated screening of the charged residues in their peptide segment. We report here on the gelation, stiffness, and response to deformation of gels formed from a negatively charged PA and HCl or CaCl2. Scanning electron microscopy of these gels demonstrates a similar morphology, whereas the oscillatory rheological measurements indicate that the calcium-mediated ionic bridges in CaCl2-PA gels form stronger intra- and interfiber cross-links than the hydrogen bonds formed by the protonated carboxylic acid residues in HCl-PA gels. As a result, CaCl2-PA gels can withstand higher strains than HCl-PA gels. After exposure to a series of strain sweeps with increasing strain amplitude HCl- and CaCl2-PA gels both recover 42% of their original stiffness. In contrast, after sustained deformation at 100% strain, HCl-PA gels recover nearly 90% of their original stiffness after 10 min, while the CaCl2-PA gels only recover 35%. This result suggests that the hydrogen bonds formed by the protonated acids in the HCl-PA gels allow the gel to relax quickly to its initial state, while the strong calcium cross-links in the CaCl2-PA gels lock in the deformed structure and inhibit the gel's ability to recover. We also show that the rheological scaling behaviors of HCl- and CaCl2-PA gels are consistent with that of uncross- and cross-linked semiflexible biopolymer networks, respectively. The ability to modify how self-assembled fibrillar networks respond to deformations is important in developing self-assembled gels that can resist and recover from the large deformations that these gels encounter while serving as synthetic cell scaffolds in vivo.
引用
收藏
页码:3641 / 3647
页数:7
相关论文
共 43 条
[1]   Coassembly of amphiphiles with opposite peptide polarities into nanofibers [J].
Behanna, HA ;
Donners, JJJM ;
Gordon, AC ;
Stupp, SI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (04) :1193-1200
[2]   Self-assembling peptide amphiphile nanofiber matrices for cell entrapment [J].
Beniash, E ;
Hartgerink, JD ;
Storrie, H ;
Stendahl, JC ;
Stupp, SI .
ACTA BIOMATERIALIA, 2005, 1 (04) :387-397
[3]   Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents [J].
Bull, SR ;
Guler, MO ;
Bras, RE ;
Meade, TJ ;
Stupp, SI .
NANO LETTERS, 2005, 5 (01) :1-4
[4]   Non-linear rheology of a face-centred cubic phase in a diblock copolymer gel [J].
Daniel, C ;
Hamley, IW ;
Wilhelm, M ;
Mingvanish, W .
RHEOLOGICA ACTA, 2001, 40 (01) :39-48
[5]   Tissue cells feel and respond to the stiffness of their substrate [J].
Discher, DE ;
Janmey, P ;
Wang, YL .
SCIENCE, 2005, 310 (5751) :1139-1143
[6]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[7]   Cell type-specific response to growth on soft materials [J].
Georges, PC ;
Janmey, PA .
JOURNAL OF APPLIED PHYSIOLOGY, 2005, 98 (04) :1547-1553
[8]   Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures [J].
Georges, PC ;
Miller, WJ ;
Meaney, DF ;
Sawyer, ES ;
Janmey, PA .
BIOPHYSICAL JOURNAL, 2006, 90 (08) :3012-3018
[9]   RHEOLOGY OF FIBRIN CLOTS .2. LINEAR VISCOELASTIC BEHAVIOR IN SHEER CREEP [J].
GERTH, C ;
ROBERTS, WW ;
FERRY, JD .
BIOPHYSICAL CHEMISTRY, 1974, 2 (03) :208-217
[10]   Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles [J].
Guler, MO ;
Soukasene, S ;
Hulvat, JF ;
Stupp, SI .
NANO LETTERS, 2005, 5 (02) :249-252