Nanoengineering Structures on Graphene with Adsorbed Hydrogen "Lines"

被引:53
作者
Chernozatonskii, Leonid A. [1 ]
Sorokin, Pavel B. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Emanuel Inst Biochem Phys, Moscow 119334, Russia
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
基金
俄罗斯基础研究基金会;
关键词
CARBON NANOTUBES; ELECTRONIC-PROPERTIES; SUPERLATTICES; PSEUDOPOTENTIALS; MODEL; STATE; EDGE; GAS;
D O I
10.1021/jp9100653
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that the lines of adsorbed hydrogen pair atoms divide a graphene sheet into electronically independent strips and form all electron waveguide or 2H-line graphene-based superlattice (2HG-SL). We investigated the electronic properties of such structures in detail. The electronic spectra of a "zigzag" (17,0)2HG-SL are similar to those of armchair graphene ribbons and have similar oscillation of the band gap with the width between adjacent 2H-lines (number n). The induced strain with the direction perpendicular to the hydrogen pair "lines" significantly changes the electronic properties of(he investigated Structures. For example, in the case of the 2HG-SL (3n,0) (n > 2) we observed the semiconductor-metal transition. Superlattices of the (n,n) type with a "staircase" of adsorbed pairs of H atoms are semiconductors with nearly linear decreasing of the band gap with increasing n. We found that the configuration with the opposite spin (antiferromagnetic) orientation between ferromagnetically ordered edge states of the (n,n) 2HG-SL is energy favorable. We also Suggested all experimental way of fabricating these superlattices. Finally, We discussed properties of possible hydrogen lined waveguide junctions.
引用
收藏
页码:3225 / 3229
页数:5
相关论文
共 50 条
[1]   CONFORMATIONAL-ANALYSIS .130. MM2 - HYDROCARBON FORCE-FIELD UTILIZING V1 AND V2 TORSIONAL TERMS [J].
ALLINGER, NL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (25) :8127-8134
[2]   Rectification properties of carbon nanotube "Y-junctions" [J].
Andriotis, AN ;
Menon, M ;
Srivastava, D ;
Chernozatonskii, L .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :66802-1
[3]   Transport properties of branched graphene nanoribbons [J].
Andriotis, Antonis N. ;
Menon, Madhu .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[4]   Building blocks for integrated graphene circuits [J].
Areshkin, Denis A. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (11) :3253-3259
[5]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[6]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[7]   Deformation effect on electronic and optical properties of nanographite ribbons [J].
Chang, C. P. ;
Wu, B. R. ;
Chen, R. B. ;
Lin, M. F. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[8]  
CHEN Z, 2007, PHYSICA E, V4, P228
[9]   Three-terminal junctions of carbon nanotubes: synthesis, structures, properties and applications [J].
Chernozatonskii, L .
JOURNAL OF NANOPARTICLE RESEARCH, 2003, 5 (5-6) :473-484
[10]   Superlattices consisting of "lines" of adsorbed hydrogen atom pairs on graphene [J].
Chernozatonskii, L. A. ;
Sorokin, P. B. ;
Belova, E. É. ;
Bruening, J. ;
Fedorov, A. S. .
JETP LETTERS, 2007, 85 (01) :77-81