Catalyst gradient for cathode active layer of proton exchange membrane fuel cell

被引:89
作者
Antoine, O
Bultel, Y
Ozil, P
Durand, R
机构
[1] Univ Geneva, Dept Chim Minerale Analyt & Appl, CH-1211 Geneva 4, Switzerland
[2] ENSEEG, UMR 5631, Lab Electrochim & Phyisochim Mat & Interfaces, F-38402 St Martin Dheres, France
关键词
oxygen reduction reaction; cathode active layer; gradient catalyst; diffusion limitation; ohmic drop;
D O I
10.1016/S0013-4686(00)00505-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The experimental use of catalyst gradients within the active layer of a PEMFC cathode allows studying the influence of the location effect of Pt nanoparticles on cathode performances. The catalyst gradient effect quantitatively and qualitatively depends on porosity: it is stronger for non-porous active layers than for porous ones. The origin of the catalyst gradient effect is not the same according to porosity: oxygen diffusion is a rate limiting step for non-porous active layers, while ionic-ohmic drop is limiting for porous ones. Thus, the catalyst utilisation efficiency increases with the preferential location of Pt nanoparticles close to the gas diffusion layer side in non-porous active layers and close to the proton exchange membrane side in porous active layers. In the latter case, better performances are observed. Therefore, the optimisation of catalyst utilisation is obtained with thin porous active layers and with preferential location of Pt nanoparticles close to the proton exchange membrane side. These experimental results are confirmed by modelling both diffusion and ionic ohmic drop within active layers with catalyst gradients. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:4493 / 4500
页数:8
相关论文
共 24 条
[1]   Electrocatalysis, diffusion and ohmic drop in PEMFC: Particle size and spatial discrete distribution effects [J].
Antoine, O ;
Bultel, Y ;
Durand, R ;
Ozil, P .
ELECTROCHIMICA ACTA, 1998, 43 (24) :3681-3691
[2]   Evaluation of methods to increase the oxygen partial pressure in PEM fuel cells [J].
Boyer, C ;
Gamburzev, S ;
Appleby, AJ .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1999, 29 (09) :1095-1102
[3]   Modelling of mass transfer within the PEM fuel cell active layer: limitations at the particle level [J].
Bultel, Y ;
Ozil, P ;
Durand, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1999, 29 (09) :1025-1033
[4]   Modelling the mode of operation of PEMFC electrodes at the particle level: influence of ohmic drop within the active layer on electrode performance [J].
Bultel, Y ;
Ozil, P ;
Durand, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (03) :269-276
[5]   STUDIES OF THE LIMITING POLARIZATION BEHAVIOR OF GAS-DIFFUSION ELECTRODES WITH DIFFERENT PLATINUM DISTRIBUTIONS AND HYDROPHOBIC PROPERTIES [J].
DASILVA, SLA ;
TICIANELLI, EA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 391 (1-2) :101-109
[6]   CHARACTERIZATION OF THE LIMITING STRUCTURAL EFFECTS ON THE ELECTROCHEMICAL-BEHAVIOR OF POROUS GAS-DIFFUSION ELECTRODES [J].
DESENA, DR ;
TICIANELLI, EA ;
GONZALEZ, ER .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 357 (1-2) :225-236
[7]   Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells [J].
Eikerling, M ;
Kornyshev, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02) :107-123
[8]   Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells [J].
Fischer, A ;
Jindra, J ;
Wendt, H .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (03) :277-282
[9]   Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer [J].
Gamez, A ;
Richard, D ;
Gallezot, P ;
Gloaguen, F ;
Faure, R ;
Durand, R .
ELECTROCHIMICA ACTA, 1996, 41 (02) :307-314
[10]   MECHANISM OF OPERATION OF TEFLON-BONDED GAS DIFFUSION ELECTRODE - A MATHEMATICAL MODEL [J].
GINER, J ;
HUNTER, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (08) :1124-&