Catalyst gradient for cathode active layer of proton exchange membrane fuel cell

被引:89
作者
Antoine, O
Bultel, Y
Ozil, P
Durand, R
机构
[1] Univ Geneva, Dept Chim Minerale Analyt & Appl, CH-1211 Geneva 4, Switzerland
[2] ENSEEG, UMR 5631, Lab Electrochim & Phyisochim Mat & Interfaces, F-38402 St Martin Dheres, France
关键词
oxygen reduction reaction; cathode active layer; gradient catalyst; diffusion limitation; ohmic drop;
D O I
10.1016/S0013-4686(00)00505-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The experimental use of catalyst gradients within the active layer of a PEMFC cathode allows studying the influence of the location effect of Pt nanoparticles on cathode performances. The catalyst gradient effect quantitatively and qualitatively depends on porosity: it is stronger for non-porous active layers than for porous ones. The origin of the catalyst gradient effect is not the same according to porosity: oxygen diffusion is a rate limiting step for non-porous active layers, while ionic-ohmic drop is limiting for porous ones. Thus, the catalyst utilisation efficiency increases with the preferential location of Pt nanoparticles close to the gas diffusion layer side in non-porous active layers and close to the proton exchange membrane side in porous active layers. In the latter case, better performances are observed. Therefore, the optimisation of catalyst utilisation is obtained with thin porous active layers and with preferential location of Pt nanoparticles close to the proton exchange membrane side. These experimental results are confirmed by modelling both diffusion and ionic ohmic drop within active layers with catalyst gradients. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:4493 / 4500
页数:8
相关论文
共 24 条
[11]   KINETIC-STUDY OF ELECTROCHEMICAL REACTIONS AT CATALYST-RECAST IONOMER INTERFACES FROM THIN ACTIVE LAYER MODELING [J].
GLOAGUEN, F ;
ANDOLFATTO, F ;
DURAND, R ;
OZIL, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1994, 24 (09) :863-869
[12]   High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes [J].
Hirano, S ;
Kim, J ;
Srinivasan, S .
ELECTROCHIMICA ACTA, 1997, 42 (10) :1587-1593
[13]   PARTICLE-SIZE EFFECT FOR OXYGEN REDUCTION AND METHANOL OXIDATION ON PT/C INSIDE A PROTON-EXCHANGE MEMBRANE [J].
KABBABI, A ;
GLOAGUEN, F ;
ANDOLFATTO, F ;
DURAND, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 373 (1-2) :251-254
[14]   Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones [J].
Kulikovsky, AA ;
Divisek, J ;
Kornyshev, AA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (11) :3981-3991
[15]   EFFECT OF SPUTTERED FILM OF PLATINUM ON LOW PLATINUM LOADING ELECTRODES ON ELECTRODE-KINETICS OF OXYGEN REDUCTION IN PROTON-EXCHANGE MEMBRANE FUEL-CELLS [J].
MUKERJEE, S ;
SRINIVASAN, S ;
APPLEBY, AJ .
ELECTROCHIMICA ACTA, 1993, 38 (12) :1661-1669
[16]   KINETICS OF FUEL-CELL REACTIONS AT THE PLATINUM SOLID POLYMER ELECTROLYTE INTERFACE [J].
PAIK, W ;
SPRINGER, TE ;
SRINIVASAN, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (03) :644-649
[17]   FUNDAMENTAL EQUATIONS OF ELECTROCHEMICAL KINETICS AT POROUS GAS-DIFFUSION ELECTRODES [J].
SRINIVASAN, S ;
HURWITZ, HD ;
BOCKRIS, JO .
JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (08) :3108-+
[18]   USE OF POROUS-ELECTRODES TO OBTAIN KINETIC RATE CONSTANTS FOR RAPID REACTIONS AND ADSORPTION-ISOTHERMS OF POISONS [J].
STONEHART, P ;
ROSS, PN .
ELECTROCHIMICA ACTA, 1976, 21 (06) :441-445
[19]   Proton conductivity in Nafion® 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane [J].
Sumner, JJ ;
Creager, SE ;
Ma, JJ ;
DesMarteau, DD .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :107-110
[20]   DEPENDENCE OF PERFORMANCE OF SOLID POLYMER ELECTROLYTE FUEL-CELLS WITH LOW PLATINUM LOADING ON MORPHOLOGICAL-CHARACTERISTICS OF THE ELECTRODES [J].
TICIANELLI, EA ;
BEERY, JG ;
SRINIVASAN, S .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (07) :597-605