Two-sided Arnoldi and nonsymmetric Lanczos algorithms

被引:30
作者
Cullum, J
Zhang, T
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
two-sided Arnoldi; nonsymmetric Lanczos; equivalences; relationships; iterative methods; reduced-order systems; eigenvalues; model reduction;
D O I
10.1137/S0895479898339013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new two-sided Arnoldi recursions and use them to de ne a model reduction procedure for large, linear, time-invariant, multi-input/multi-output differential algebraic systems. We prove that this procedure has desirable moment matching properties. We de ne a corresponding model reduction procedure which is based on a band nonsymmetric Lanczos recursion and prove that if the deflation is exact and there are no breakdowns in the recursions, then these two model reduction procedures generate identical reduced-order systems. We prove similar equivalences for corresponding eigenelement procedures. We concentrate on the theoretical properties of the new algorithms.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 19 条
[1]  
Aliaga JI, 2000, MATH COMPUT, V69, P1577, DOI 10.1090/S0025-5718-99-01163-1
[2]  
BAI ZJ, 1994, MATH COMPUT, V62, P209, DOI 10.1090/S0025-5718-1994-1201066-7
[3]   Iterative methods for solving Ax=b, GMRES/FOM versus QMR/BiCG [J].
Cullum, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (01) :1-24
[4]   A GENERALIZED NONSYMMETRIC LANCZOS PROCEDURE [J].
CULLUM, J ;
KERNER, W ;
WILLOUGHBY, R .
COMPUTER PHYSICS COMMUNICATIONS, 1989, 53 (1-3) :19-48
[5]   Arnoldi versus nonsymmetric Lanczos algorithms for solving matrix eigenvalue problems [J].
Cullum, J .
BIT NUMERICAL MATHEMATICS, 1996, 36 (03) :470-493
[6]   A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation [J].
Cullum, J ;
Ruehli, A ;
Zhang, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2000, 47 (04) :261-273
[7]  
Cullum J., 1974, P 1974 IEEE C DEC CO, P505
[8]  
Cullum J., 1985, LANCZOS ALGORITHMS L, V2
[9]  
Cullum J. K., 1985, LANCZOS ALGORITHMS L, V1
[10]   EFFICIENT LINEAR CIRCUIT ANALYSIS BY PADE-APPROXIMATION VIA THE LANCZOS PROCESS [J].
FELDMANN, P ;
FREUND, RW .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (05) :639-649