Ca2+-calmodulin-dependent facilitation and Ca2+ inactivation of Ca2+ release-activated Ca2+ channel

被引:30
作者
Moreau, B [1 ]
Straube, S [1 ]
Fisher, RJ [1 ]
Putney, JW [1 ]
Parekh, AB [1 ]
机构
[1] Univ Oxford, Dept Physiol, Lab Cellular & Mol Signalling, Oxford OX1 3PT, England
基金
英国医学研究理事会;
关键词
D O I
10.1074/jbc.M409619200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.
引用
收藏
页码:8776 / 8783
页数:8
相关论文
共 42 条
[1]   An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells [J].
Bakowski, D ;
Glitsch, MD ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 532 (01) :55-71
[2]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[3]   Involvement of calmodulin in the activation of store-operated Ca2+ entry in rat hepatocytes [J].
Cao, YM ;
Chatton, JY .
FEBS LETTERS, 1998, 424 (1-2) :33-36
[5]   Plasticity of mitochondrial calcium signaling [J].
Csordás, G ;
Hajnóczky, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :42273-42282
[6]   Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells [J].
Fierro, L ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 522 (02) :247-257
[7]   Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells [J].
Fierro, L ;
Parekh, AB .
JOURNAL OF MEMBRANE BIOLOGY, 1999, 168 (01) :9-17
[8]   CALCIUM AS A COAGONIST OF INOSITOL 1,4,5-TRISPHOSPHATE INDUCED CALCIUM RELEASE [J].
FINCH, EA ;
TURNER, TJ ;
GOLDIN, SM .
SCIENCE, 1991, 252 (5004) :443-446
[9]  
FOSKETT JK, 1994, J BIOL CHEM, V269, P31525
[10]   Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC [J].
Gilabert, JA ;
Parekh, AB .
EMBO JOURNAL, 2000, 19 (23) :6401-6407