Excesses of Gabor frames

被引:15
作者
Balan, R
Casazza, PG
Heil, C
Landau, Z
机构
[1] Siemens Corp Res, Princeton, NJ 08540 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Math Sci Res Inst, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
density; excess; frames; Gabor systems; modulation spaces; Riesz bases; wavelets; Weyl-Heisenberg systems;
D O I
10.1016/S1063-5203(03)00006-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gabor system for L-2(R-d) has the form G(g, Lambda) = {e(2piibx)g(x - a)}((a,b)is an element ofLambda), where g is an element of L-2(R-d) and Lambda is a sequence of points in R-2d. We prove that, with only a mild restriction on the generator g and for nearly arbitrary sets of time-frequency shifts Lambda, an overcomplete Gabor frame has infinite excess, and in fact there exists an infinite subset that can be removed yet leave a frame. The proof of this result yields an interesting connection between the density of Lambda and the excess of the frame. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 26 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]   The analysis and design of windowed Fourier frame based multiple description source coding schemes [J].
Balan, R ;
Daubechies, I ;
Vaishampayan, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2491-2536
[3]  
BALAN R, 2002, IN PRESS ADV COMPUT
[4]  
Bergh J., 1976, INTERPOLATION SPACES
[5]  
CASAZZA P, 2002, IN PRESS ADV COMPUT
[6]  
Christensen O, 1999, APPL COMPUT HARMON A, V7, P292, DOI 10.1006/acha.1998.0271
[7]  
CORDERO E, 2002, TIME FREQUENCY ANAL
[8]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[9]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[10]  
ELDAR YC, IN PRESS IEEE T INFO