Excesses of Gabor frames

被引:15
作者
Balan, R
Casazza, PG
Heil, C
Landau, Z
机构
[1] Siemens Corp Res, Princeton, NJ 08540 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Math Sci Res Inst, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
density; excess; frames; Gabor systems; modulation spaces; Riesz bases; wavelets; Weyl-Heisenberg systems;
D O I
10.1016/S1063-5203(03)00006-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gabor system for L-2(R-d) has the form G(g, Lambda) = {e(2piibx)g(x - a)}((a,b)is an element ofLambda), where g is an element of L-2(R-d) and Lambda is a sequence of points in R-2d. We prove that, with only a mild restriction on the generator g and for nearly arbitrary sets of time-frequency shifts Lambda, an overcomplete Gabor frame has infinite excess, and in fact there exists an infinite subset that can be removed yet leave a frame. The proof of this result yields an interesting connection between the density of Lambda and the excess of the frame. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 26 条
[11]   ON A NEW SEGAL ALGEBRA [J].
FEICHTINGER, HG .
MONATSHEFTE FUR MATHEMATIK, 1981, 92 (04) :269-289
[12]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .2. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
MONATSHEFTE FUR MATHEMATIK, 1989, 108 (2-3) :129-148
[13]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .1. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (02) :307-340
[14]   Gabor frames and time-frequency analysis of distributions [J].
Feichtinger, HG ;
Grochenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 146 (02) :464-495
[15]  
FEICHTINGER HG, 1980, P C BUDAPEST, V38, P509
[16]   Quantized frame expansions with erasures [J].
Goyal, VK ;
Kovacevic, J ;
Kelner, JA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (03) :203-233
[17]   The Balian-Low theorem for symplectic lattices in higher dimensions [J].
Gröchenig, K ;
Han, DG ;
Heil, C ;
Kutyniok, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (02) :169-176
[18]  
GROCHENIG K, 2001, FDN TIME FREQUENCY A
[19]  
HEIL C, 2002, IN PRESS P INT C WAV
[20]   CONTINUOUS AND DISCRETE WAVELET TRANSFORMS [J].
HEIL, CE ;
WALNUT, DF .
SIAM REVIEW, 1989, 31 (04) :628-666